Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Schritt 1.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 1.2
Multipliziere mit durch Addieren der Exponenten.
Schritt 1.2.1
Bewege .
Schritt 1.2.2
Mutltipliziere mit .
Schritt 1.3
Kürze den gemeinsamen Faktor von .
Schritt 1.3.1
Faktorisiere aus heraus.
Schritt 1.3.2
Kürze den gemeinsamen Faktor.
Schritt 1.3.3
Forme den Ausdruck um.
Schritt 2
Schritt 2.1
Teile jeden Ausdruck in durch .
Schritt 2.2
Vereinfache die linke Seite.
Schritt 2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.2
Dividiere durch .
Schritt 2.3
Vereinfache die rechte Seite.
Schritt 2.3.1
Kürze den gemeinsamen Faktor von .
Schritt 2.3.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.1.2
Forme den Ausdruck um.
Schritt 3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 4
Schritt 4.1
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 4.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.3
Schreibe als um.
Schritt 4.4
Mutltipliziere mit .
Schritt 4.5
Vereinige und vereinfache den Nenner.
Schritt 4.5.1
Mutltipliziere mit .
Schritt 4.5.2
Potenziere mit .
Schritt 4.5.3
Potenziere mit .
Schritt 4.5.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.5.5
Addiere und .
Schritt 4.5.6
Schreibe als um.
Schritt 4.5.6.1
Benutze , um als neu zu schreiben.
Schritt 4.5.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.5.6.3
Kombiniere und .
Schritt 4.5.6.4
Kürze den gemeinsamen Faktor von .
Schritt 4.5.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 4.5.6.4.2
Forme den Ausdruck um.
Schritt 4.5.6.5
Vereinfache.
Schritt 4.6
Kombiniere unter Anwendung der Produktregel für das Wurzelziehen.
Schritt 4.7
Stelle die Faktoren in um.
Schritt 5
Schritt 5.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 5.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 5.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.