Algebra Beispiele

Ermittle die Nullstellen und ihre Multiplizitäten (2x^4-5x^3+10x-25)(x^3+5)
Schritt 1
Setze gleich .
Schritt 2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Faktorisiere.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 2.1.1.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 2.1.2
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 2.2
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 2.3
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Setze gleich .
Schritt 2.3.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.3.2.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.2.1
Teile jeden Ausdruck in durch .
Schritt 2.3.2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.2.2.2.1.2
Dividiere durch .
Schritt 2.4
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Setze gleich .
Schritt 2.4.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.4.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 2.4.2.3
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.3.1
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.3.1.1
Schreibe als um.
Schritt 2.4.2.3.1.2
Schreibe als um.
Schritt 2.4.2.3.2
Ziehe Terme aus der Wurzel heraus.
Schritt 2.4.2.3.3
Schreibe als um.
Schritt 2.5
Die endgültige Lösung sind alle Werte, die wahr machen. Die Multiplizität einer Wurzel gibt an, wie oft die Wurzel auftritt.
(Vielfachheit von )
(Vielfachheit von )
(Vielfachheit von )
(Vielfachheit von )
Schritt 3