Algebra Beispiele

Ermittle die Umkehrfunktion 3 Quadratwurzel von 7x
Schritt 1
Vertausche die Variablen.
Schritt 2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Schreibe die Gleichung als um.
Schritt 2.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Teile jeden Ausdruck in durch .
Schritt 2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.2.1.2
Dividiere durch .
Schritt 2.3
Um die Wurzel auf der linken Seite der Gleichung zu entfernen, quadriere beide Seiten der Gleichung.
Schritt 2.4
Vereinfache jede Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Benutze , um als neu zu schreiben.
Schritt 2.4.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.1.1
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.1.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.4.2.1.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 2.4.2.1.1.2.2
Forme den Ausdruck um.
Schritt 2.4.2.1.2
Vereinfache.
Schritt 2.4.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.3.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.3.1.1
Wende die Produktregel auf an.
Schritt 2.4.3.1.2
Potenziere mit .
Schritt 2.5
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1
Teile jeden Ausdruck in durch .
Schritt 2.5.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.5.2.1.2
Dividiere durch .
Schritt 2.5.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.3.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 2.5.3.2
Kombinieren.
Schritt 2.5.3.3
Multipliziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.3.3.1
Mutltipliziere mit .
Schritt 2.5.3.3.2
Mutltipliziere mit .
Schritt 3
Replace with to show the final answer.
Schritt 4
Überprüfe, ob die Umkehrfunktion von ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 4.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 4.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 4.2.3
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.3.1
Wende die Produktregel auf an.
Schritt 4.2.3.2
Potenziere mit .
Schritt 4.2.3.3
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.3.3.1
Benutze , um als neu zu schreiben.
Schritt 4.2.3.3.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.2.3.3.3
Kombiniere und .
Schritt 4.2.3.3.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.3.3.4.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.3.3.4.2
Forme den Ausdruck um.
Schritt 4.2.3.3.5
Vereinfache.
Schritt 4.2.3.4
Mutltipliziere mit .
Schritt 4.2.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.4.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.4.2
Dividiere durch .
Schritt 4.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 4.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 4.3.3
Kombiniere und .
Schritt 4.3.4
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.4.1
Faktorisiere aus heraus.
Schritt 4.3.4.2
Faktorisiere aus heraus.
Schritt 4.3.4.3
Kürze den gemeinsamen Faktor.
Schritt 4.3.4.4
Forme den Ausdruck um.
Schritt 4.3.5
Schreibe als um.
Schritt 4.3.6
Schreibe als um.
Schritt 4.3.7
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 4.3.8
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.8.1
Kürze den gemeinsamen Faktor.
Schritt 4.3.8.2
Forme den Ausdruck um.
Schritt 4.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .