Algebra Beispiele

미분 구하기 - d/dn k/(x^n)
Schritt 1
Differenziere unter Anwendung der Faktorregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2
Wende die grundlegenden Potenzregeln an.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Schreibe als um.
Schritt 1.2.2
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.2.2.2
Bringe auf die linke Seite von .
Schritt 1.2.2.3
Schreibe als um.
Schritt 2
Differenziere mit Hilfe der Potenzregel, welche besagt, dass gleich ist, wobei und ist.
Schritt 3
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.2
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Mutltipliziere mit .
Schritt 3.2.2
Mutltipliziere mit .
Schritt 3.2.3
Mutltipliziere mit .
Schritt 3.2.4
Addiere und .
Schritt 3.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.5
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.1
Mutltipliziere mit .
Schritt 3.5.2
Bringe auf die linke Seite von .
Schritt 3.5.3
Schreibe als um.
Schritt 4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Stelle die Faktoren von um.
Schritt 4.2
Stelle die Faktoren in um.