Algebra Beispiele

Bestimme die Schnittpunkte y=-x^2+1 y=x^2
Schritt 1
Eliminiere die beiden gleichen Seiten jeder Gleichung und vereine.
Schritt 2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Bringe alle Terme, die enthalten, auf die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.1.2
Subtrahiere von .
Schritt 2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Teile jeden Ausdruck in durch .
Schritt 2.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.2.1.2
Dividiere durch .
Schritt 2.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 2.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 2.5
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1
Schreibe als um.
Schritt 2.5.2
Jede Wurzel von ist .
Schritt 2.5.3
Mutltipliziere mit .
Schritt 2.5.4
Vereinige und vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.4.1
Mutltipliziere mit .
Schritt 2.5.4.2
Potenziere mit .
Schritt 2.5.4.3
Potenziere mit .
Schritt 2.5.4.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.5.4.5
Addiere und .
Schritt 2.5.4.6
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.4.6.1
Benutze , um als neu zu schreiben.
Schritt 2.5.4.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.5.4.6.3
Kombiniere und .
Schritt 2.5.4.6.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.4.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 2.5.4.6.4.2
Forme den Ausdruck um.
Schritt 2.5.4.6.5
Berechne den Exponenten.
Schritt 2.6
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 2.6.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 2.6.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 3
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Ersetze durch .
Schritt 3.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Wende die Produktregel auf an.
Schritt 3.2.2
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1
Benutze , um als neu zu schreiben.
Schritt 3.2.2.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.2.2.3
Kombiniere und .
Schritt 3.2.2.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.4.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.2.4.2
Forme den Ausdruck um.
Schritt 3.2.2.5
Berechne den Exponenten.
Schritt 3.2.3
Potenziere mit .
Schritt 3.2.4
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.4.1
Faktorisiere aus heraus.
Schritt 3.2.4.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.4.2.1
Faktorisiere aus heraus.
Schritt 3.2.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.2.4.2.3
Forme den Ausdruck um.
Schritt 4
Die Lösung des Systems ist der vollständige Satz geordneter Paare, die gültige Lösungen sind.
Schritt 5
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Punkt-Form:
Gleichungsform:
Schritt 6