Algebra Beispiele

Ermittle die Umkehrfunktion 10^(x-1)
Schritt 1
Vertausche die Variablen.
Schritt 2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Schreibe die Gleichung als um.
Schritt 2.2
Wende auf beiden Seiten der Gleichung den logarithmische Basis an, um die Variable aus dem Exponenten zu eliminieren.
Schritt 2.3
Multipliziere die linke Seite aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Zerlege durch Herausziehen von aus dem Logarithmus.
Schritt 2.3.2
Die logarithmische Basis von ist .
Schritt 2.3.3
Mutltipliziere mit .
Schritt 2.4
Addiere zu beiden Seiten der Gleichung.
Schritt 3
Replace with to show the final answer.
Schritt 4
Überprüfe, ob die Umkehrfunktion von ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 4.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 4.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 4.2.3
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.3.1
Benutze die Rechenregeln für Logarithmen, um aus dem Exponenten zu ziehen.
Schritt 4.2.3.2
Die logarithmische Basis von ist .
Schritt 4.2.3.3
Mutltipliziere mit .
Schritt 4.2.4
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.4.1
Addiere und .
Schritt 4.2.4.2
Addiere und .
Schritt 4.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 4.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 4.3.3
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.3.1
Subtrahiere von .
Schritt 4.3.3.2
Addiere und .
Schritt 4.3.4
Exponentialfunktion und Logarithmusfunktion sind zueinander inverse Funktionen.
Schritt 4.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .