Gib eine Aufgabe ein ...
Algebra Beispiele
, ,
Schritt 1
Schritt 1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2
Addiere zu beiden Seiten der Gleichung.
Schritt 2
Schritt 2.1
Ersetze alle in durch .
Schritt 2.2
Vereinfache die linke Seite.
Schritt 2.2.1
Vereinfache .
Schritt 2.2.1.1
Vereinfache jeden Term.
Schritt 2.2.1.1.1
Wende das Distributivgesetz an.
Schritt 2.2.1.1.2
Vereinfache.
Schritt 2.2.1.1.2.1
Mutltipliziere mit .
Schritt 2.2.1.1.2.2
Mutltipliziere mit .
Schritt 2.2.1.2
Vereinfache durch Addieren von Termen.
Schritt 2.2.1.2.1
Subtrahiere von .
Schritt 2.2.1.2.2
Addiere und .
Schritt 2.3
Ersetze alle in durch .
Schritt 2.4
Vereinfache die linke Seite.
Schritt 2.4.1
Vereinfache .
Schritt 2.4.1.1
Vereinfache jeden Term.
Schritt 2.4.1.1.1
Wende das Distributivgesetz an.
Schritt 2.4.1.1.2
Vereinfache.
Schritt 2.4.1.1.2.1
Mutltipliziere mit .
Schritt 2.4.1.1.2.2
Mutltipliziere mit .
Schritt 2.4.1.2
Vereinfache durch Addieren von Termen.
Schritt 2.4.1.2.1
Addiere und .
Schritt 2.4.1.2.2
Subtrahiere von .
Schritt 3
Schritt 3.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 3.1.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.1.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.1.3
Subtrahiere von .
Schritt 3.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.2.1
Teile jeden Ausdruck in durch .
Schritt 3.2.2
Vereinfache die linke Seite.
Schritt 3.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.2.1.2
Dividiere durch .
Schritt 3.2.3
Vereinfache die rechte Seite.
Schritt 3.2.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 4
Schritt 4.1
Ersetze alle in durch .
Schritt 4.2
Vereinfache die linke Seite.
Schritt 4.2.1
Vereinfache .
Schritt 4.2.1.1
Vereinfache jeden Term.
Schritt 4.2.1.1.1
Wende das Distributivgesetz an.
Schritt 4.2.1.1.2
Multipliziere .
Schritt 4.2.1.1.2.1
Kombiniere und .
Schritt 4.2.1.1.2.2
Mutltipliziere mit .
Schritt 4.2.1.1.3
Multipliziere .
Schritt 4.2.1.1.3.1
Mutltipliziere mit .
Schritt 4.2.1.1.3.2
Kombiniere und .
Schritt 4.2.1.1.3.3
Mutltipliziere mit .
Schritt 4.2.1.1.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.2.1.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4.2.1.3
Kombiniere und .
Schritt 4.2.1.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.2.1.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.2.1.6
Mutltipliziere mit .
Schritt 4.2.1.7
Addiere und .
Schritt 4.2.1.8
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4.2.1.9
Vereinfache Terme.
Schritt 4.2.1.9.1
Kombiniere und .
Schritt 4.2.1.9.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.2.1.10
Vereinfache den Zähler.
Schritt 4.2.1.10.1
Mutltipliziere mit .
Schritt 4.2.1.10.2
Addiere und .
Schritt 4.3
Ersetze alle in durch .
Schritt 4.4
Vereinfache die rechte Seite.
Schritt 4.4.1
Vereinfache .
Schritt 4.4.1.1
Vereinfache jeden Term.
Schritt 4.4.1.1.1
Wende das Distributivgesetz an.
Schritt 4.4.1.1.2
Multipliziere .
Schritt 4.4.1.1.2.1
Kombiniere und .
Schritt 4.4.1.1.2.2
Mutltipliziere mit .
Schritt 4.4.1.1.3
Multipliziere .
Schritt 4.4.1.1.3.1
Mutltipliziere mit .
Schritt 4.4.1.1.3.2
Kombiniere und .
Schritt 4.4.1.1.3.3
Mutltipliziere mit .
Schritt 4.4.1.1.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.4.1.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4.4.1.3
Kombiniere und .
Schritt 4.4.1.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.4.1.5
Vereinfache den Zähler.
Schritt 4.4.1.5.1
Mutltipliziere mit .
Schritt 4.4.1.5.2
Addiere und .
Schritt 4.4.1.6
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.4.1.7
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4.4.1.8
Vereinfache Terme.
Schritt 4.4.1.8.1
Kombiniere und .
Schritt 4.4.1.8.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.4.1.8.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.4.1.9
Bringe auf die linke Seite von .
Schritt 4.4.1.10
Vereinfache Terme.
Schritt 4.4.1.10.1
Addiere und .
Schritt 4.4.1.10.2
Faktorisiere aus heraus.
Schritt 4.4.1.10.3
Schreibe als um.
Schritt 4.4.1.10.4
Faktorisiere aus heraus.
Schritt 4.4.1.10.5
Vereinfache den Ausdruck.
Schritt 4.4.1.10.5.1
Schreibe als um.
Schritt 4.4.1.10.5.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 5
Schritt 5.1
Multipliziere beide Seiten mit .
Schritt 5.2
Vereinfache.
Schritt 5.2.1
Vereinfache die linke Seite.
Schritt 5.2.1.1
Kürze den gemeinsamen Faktor von .
Schritt 5.2.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.1.1.2
Forme den Ausdruck um.
Schritt 5.2.2
Vereinfache die rechte Seite.
Schritt 5.2.2.1
Mutltipliziere mit .
Schritt 5.3
Löse nach auf.
Schritt 5.3.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 5.3.1.1
Addiere zu beiden Seiten der Gleichung.
Schritt 5.3.1.2
Addiere und .
Schritt 5.3.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 5.3.2.1
Teile jeden Ausdruck in durch .
Schritt 5.3.2.2
Vereinfache die linke Seite.
Schritt 5.3.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 5.3.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.2.2.1.2
Dividiere durch .
Schritt 5.3.2.3
Vereinfache die rechte Seite.
Schritt 5.3.2.3.1
Dividiere durch .
Schritt 6
Schritt 6.1
Ersetze alle in durch .
Schritt 6.2
Vereinfache die rechte Seite.
Schritt 6.2.1
Vereinfache .
Schritt 6.2.1.1
Vereinfache den Zähler.
Schritt 6.2.1.1.1
Mutltipliziere mit .
Schritt 6.2.1.1.2
Addiere und .
Schritt 6.2.1.2
Vereinfache den Ausdruck.
Schritt 6.2.1.2.1
Dividiere durch .
Schritt 6.2.1.2.2
Mutltipliziere mit .
Schritt 6.3
Ersetze alle in durch .
Schritt 6.4
Vereinfache die rechte Seite.
Schritt 6.4.1
Vereinfache .
Schritt 6.4.1.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6.4.1.2
Vereinfache den Ausdruck.
Schritt 6.4.1.2.1
Mutltipliziere mit .
Schritt 6.4.1.2.2
Subtrahiere von .
Schritt 6.4.1.2.3
Dividiere durch .
Schritt 7
Die Lösung des Systems ist der vollständige Satz geordneter Paare, die gültige Lösungen sind.
Schritt 8
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Punkt-Form:
Gleichungsform: