Gib eine Aufgabe ein ...
Algebra Beispiele
,
Schritt 1
Schritt 1.1
Addiere zu beiden Seiten der Gleichung.
Schritt 1.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 1.2.1
Teile jeden Ausdruck in durch .
Schritt 1.2.2
Vereinfache die linke Seite.
Schritt 1.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 1.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.2.1.2
Dividiere durch .
Schritt 2
Schritt 2.1
Ersetze alle in durch .
Schritt 2.2
Vereinfache die linke Seite.
Schritt 2.2.1
Vereinfache .
Schritt 2.2.1.1
Vereinfache jeden Term.
Schritt 2.2.1.1.1
Schreibe als um.
Schritt 2.2.1.1.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 2.2.1.1.2.1
Wende das Distributivgesetz an.
Schritt 2.2.1.1.2.2
Wende das Distributivgesetz an.
Schritt 2.2.1.1.2.3
Wende das Distributivgesetz an.
Schritt 2.2.1.1.3
Vereinfache und fasse gleichartige Terme zusammen.
Schritt 2.2.1.1.3.1
Vereinfache jeden Term.
Schritt 2.2.1.1.3.1.1
Multipliziere .
Schritt 2.2.1.1.3.1.1.1
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.1.2
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.2
Multipliziere .
Schritt 2.2.1.1.3.1.2.1
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.2.2
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.3
Multipliziere .
Schritt 2.2.1.1.3.1.3.1
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.3.2
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.4
Multipliziere .
Schritt 2.2.1.1.3.1.4.1
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.4.2
Potenziere mit .
Schritt 2.2.1.1.3.1.4.3
Potenziere mit .
Schritt 2.2.1.1.3.1.4.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.2.1.1.3.1.4.5
Addiere und .
Schritt 2.2.1.1.3.1.4.6
Mutltipliziere mit .
Schritt 2.2.1.1.3.2
Addiere und .
Schritt 2.2.1.1.4
Kürze den gemeinsamen Faktor von .
Schritt 2.2.1.1.4.1
Faktorisiere aus heraus.
Schritt 2.2.1.1.4.2
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.1.4.3
Forme den Ausdruck um.
Schritt 2.2.1.1.5
Wende das Distributivgesetz an.
Schritt 2.2.1.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.2.1.3
Vereinfache Terme.
Schritt 2.2.1.3.1
Kombiniere und .
Schritt 2.2.1.3.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.2.1.3.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.2.1.4
Bringe auf die linke Seite von .
Schritt 2.2.1.5
Vereinfache durch Addieren von Termen.
Schritt 2.2.1.5.1
Subtrahiere von .
Schritt 2.2.1.5.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.2.1.6
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.2.1.7
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Schritt 2.2.1.7.1
Mutltipliziere mit .
Schritt 2.2.1.7.2
Mutltipliziere mit .
Schritt 2.2.1.8
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.2.1.9
Vereinfache den Zähler.
Schritt 2.2.1.9.1
Mutltipliziere mit .
Schritt 2.2.1.9.2
Stelle die Terme um.
Schritt 2.2.1.9.3
Faktorisiere durch Gruppieren.
Schritt 2.2.1.9.3.1
Für ein Polynom der Form schreibe den mittleren Term als eine Summe zweier Terme um, deren Produkt gleich und deren Summe gleich ist.
Schritt 2.2.1.9.3.1.1
Faktorisiere aus heraus.
Schritt 2.2.1.9.3.1.2
Schreibe um als plus
Schritt 2.2.1.9.3.1.3
Wende das Distributivgesetz an.
Schritt 2.2.1.9.3.1.4
Mutltipliziere mit .
Schritt 2.2.1.9.3.2
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Schritt 2.2.1.9.3.2.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 2.2.1.9.3.2.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 2.2.1.9.3.3
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 3
Schritt 3.1
Multipliziere beide Seiten mit .
Schritt 3.2
Vereinfache.
Schritt 3.2.1
Vereinfache die linke Seite.
Schritt 3.2.1.1
Vereinfache .
Schritt 3.2.1.1.1
Kürze den gemeinsamen Faktor von .
Schritt 3.2.1.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.1.1.2
Forme den Ausdruck um.
Schritt 3.2.1.1.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 3.2.1.1.2.1
Wende das Distributivgesetz an.
Schritt 3.2.1.1.2.2
Wende das Distributivgesetz an.
Schritt 3.2.1.1.2.3
Wende das Distributivgesetz an.
Schritt 3.2.1.1.3
Vereinfache und fasse gleichartige Terme zusammen.
Schritt 3.2.1.1.3.1
Vereinfache jeden Term.
Schritt 3.2.1.1.3.1.1
Multipliziere mit durch Addieren der Exponenten.
Schritt 3.2.1.1.3.1.1.1
Bewege .
Schritt 3.2.1.1.3.1.1.2
Mutltipliziere mit .
Schritt 3.2.1.1.3.1.2
Mutltipliziere mit .
Schritt 3.2.1.1.3.1.3
Mutltipliziere mit .
Schritt 3.2.1.1.3.1.4
Mutltipliziere mit .
Schritt 3.2.1.1.3.2
Addiere und .
Schritt 3.2.2
Vereinfache die rechte Seite.
Schritt 3.2.2.1
Mutltipliziere mit .
Schritt 3.3
Löse nach auf.
Schritt 3.3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.3.2
Subtrahiere von .
Schritt 3.3.3
Faktorisiere durch Gruppieren.
Schritt 3.3.3.1
Für ein Polynom der Form schreibe den mittleren Term als eine Summe zweier Terme um, deren Produkt gleich und deren Summe gleich ist.
Schritt 3.3.3.1.1
Faktorisiere aus heraus.
Schritt 3.3.3.1.2
Schreibe um als plus
Schritt 3.3.3.1.3
Wende das Distributivgesetz an.
Schritt 3.3.3.2
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Schritt 3.3.3.2.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 3.3.3.2.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 3.3.3.3
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 3.3.4
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 3.3.5
Setze gleich und löse nach auf.
Schritt 3.3.5.1
Setze gleich .
Schritt 3.3.5.2
Löse nach auf.
Schritt 3.3.5.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.3.5.2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.3.5.2.2.1
Teile jeden Ausdruck in durch .
Schritt 3.3.5.2.2.2
Vereinfache die linke Seite.
Schritt 3.3.5.2.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.3.5.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.5.2.2.2.1.2
Dividiere durch .
Schritt 3.3.5.2.2.3
Vereinfache die rechte Seite.
Schritt 3.3.5.2.2.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.3.6
Setze gleich und löse nach auf.
Schritt 3.3.6.1
Setze gleich .
Schritt 3.3.6.2
Addiere zu beiden Seiten der Gleichung.
Schritt 3.3.7
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 4
Schritt 4.1
Ersetze alle in durch .
Schritt 4.2
Vereinfache die rechte Seite.
Schritt 4.2.1
Vereinfache .
Schritt 4.2.1.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.2.1.2
Vereinfache den Ausdruck.
Schritt 4.2.1.2.1
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 4.2.1.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.2.1.2.3
Subtrahiere von .
Schritt 4.2.1.2.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.2.1.3
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 4.2.1.4
Kürze den gemeinsamen Faktor von .
Schritt 4.2.1.4.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 4.2.1.4.2
Faktorisiere aus heraus.
Schritt 4.2.1.4.3
Kürze den gemeinsamen Faktor.
Schritt 4.2.1.4.4
Forme den Ausdruck um.
Schritt 4.2.1.5
Ziehe das Minuszeichen vor den Bruch.
Schritt 5
Schritt 5.1
Ersetze alle in durch .
Schritt 5.2
Vereinfache die rechte Seite.
Schritt 5.2.1
Vereinfache .
Schritt 5.2.1.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.2.1.2
Vereinfache den Ausdruck.
Schritt 5.2.1.2.1
Addiere und .
Schritt 5.2.1.2.2
Dividiere durch .
Schritt 6
Die Lösung des Systems ist der vollständige Satz geordneter Paare, die gültige Lösungen sind.
Schritt 7
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Punkt-Form:
Gleichungsform:
Schritt 8