Algebra Beispiele

Löse durch Faktorisieren Quadratwurzel von 72-x = Quadratwurzel von x/5
Schritt 1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Schreibe als um.
Schritt 2.1.2
Mutltipliziere mit .
Schritt 2.1.3
Vereinige und vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.3.1
Mutltipliziere mit .
Schritt 2.1.3.2
Potenziere mit .
Schritt 2.1.3.3
Potenziere mit .
Schritt 2.1.3.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.1.3.5
Addiere und .
Schritt 2.1.3.6
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.3.6.1
Benutze , um als neu zu schreiben.
Schritt 2.1.3.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.1.3.6.3
Kombiniere und .
Schritt 2.1.3.6.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.3.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 2.1.3.6.4.2
Forme den Ausdruck um.
Schritt 2.1.3.6.5
Berechne den Exponenten.
Schritt 2.1.4
Kombiniere unter Anwendung der Produktregel für das Wurzelziehen.
Schritt 2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.3
Kombiniere und .
Schritt 2.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.5
Bringe auf die linke Seite von .
Schritt 2.6
Stelle die Faktoren in um.
Schritt 3
Setze den Zähler gleich Null.
Schritt 4
Löse die Gleichung nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Addiere zu beiden Seiten der Gleichung.
Schritt 4.2
Um die Wurzel auf der linken Seite der Gleichung zu entfernen, quadriere beide Seiten der Gleichung.
Schritt 4.3
Vereinfache jede Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Benutze , um als neu zu schreiben.
Schritt 4.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1.1
Wende die Produktregel auf an.
Schritt 4.3.2.1.2
Potenziere mit .
Schritt 4.3.2.1.3
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1.3.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.3.2.1.3.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1.3.2.1
Kürze den gemeinsamen Faktor.
Schritt 4.3.2.1.3.2.2
Forme den Ausdruck um.
Schritt 4.3.2.1.4
Vereinfache.
Schritt 4.3.2.1.5
Wende das Distributivgesetz an.
Schritt 4.3.2.1.6
Multipliziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1.6.1
Mutltipliziere mit .
Schritt 4.3.2.1.6.2
Mutltipliziere mit .
Schritt 4.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.3.1
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.3.1.1
Benutze , um als neu zu schreiben.
Schritt 4.3.3.1.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.3.3.1.3
Kombiniere und .
Schritt 4.3.3.1.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.3.1.4.1
Kürze den gemeinsamen Faktor.
Schritt 4.3.3.1.4.2
Forme den Ausdruck um.
Schritt 4.3.3.1.5
Vereinfache.
Schritt 4.4
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.1
Bringe alle Terme, die enthalten, auf die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.4.1.2
Subtrahiere von .
Schritt 4.4.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.4.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.3.1
Teile jeden Ausdruck in durch .
Schritt 4.4.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 4.4.3.2.1.2
Dividiere durch .
Schritt 4.4.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.3.3.1
Dividiere durch .