Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Schritt 1.1
Faktorisiere aus heraus.
Schritt 1.1.1
Faktorisiere aus heraus.
Schritt 1.1.2
Faktorisiere aus heraus.
Schritt 1.1.3
Faktorisiere aus heraus.
Schritt 1.2
Schreibe als um.
Schritt 1.3
Da beide Terme perfekte Terme zur dritten Potenz sind, faktorisiere mithilfe der Formel für die Differenz kubischer Terme, , mit und .
Schritt 1.4
Vereinfache.
Schritt 1.4.1
Bringe auf die linke Seite von .
Schritt 1.4.2
Potenziere mit .
Schritt 2
Schritt 2.1
Faktorisiere aus heraus.
Schritt 2.1.1
Faktorisiere aus heraus.
Schritt 2.1.2
Faktorisiere aus heraus.
Schritt 2.1.3
Faktorisiere aus heraus.
Schritt 2.2
Schreibe als um.
Schritt 2.3
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 3
Schritt 3.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 3.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 4
Schritt 4.1
Faktorisiere aus heraus.
Schritt 4.1.1
Faktorisiere aus heraus.
Schritt 4.1.2
Faktorisiere aus heraus.
Schritt 4.1.3
Faktorisiere aus heraus.
Schritt 4.1.4
Faktorisiere aus heraus.
Schritt 4.1.5
Faktorisiere aus heraus.
Schritt 4.2
Kombinieren.
Schritt 4.3
Kürze den gemeinsamen Teiler von und .
Schritt 4.3.1
Faktorisiere aus heraus.
Schritt 4.3.2
Kürze die gemeinsamen Faktoren.
Schritt 4.3.2.1
Faktorisiere aus heraus.
Schritt 4.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 4.3.2.3
Forme den Ausdruck um.
Schritt 4.4
Kürze den gemeinsamen Faktor von .
Schritt 4.4.1
Kürze den gemeinsamen Faktor.
Schritt 4.4.2
Forme den Ausdruck um.
Schritt 4.5
Kürze den gemeinsamen Faktor von .
Schritt 4.5.1
Kürze den gemeinsamen Faktor.
Schritt 4.5.2
Forme den Ausdruck um.
Schritt 4.6
Kürze den gemeinsamen Faktor von .
Schritt 4.6.1
Kürze den gemeinsamen Faktor.
Schritt 4.6.2
Forme den Ausdruck um.
Schritt 4.7
Kürze den gemeinsamen Faktor von .
Schritt 4.7.1
Kürze den gemeinsamen Faktor.
Schritt 4.7.2
Forme den Ausdruck um.