Algebra Beispiele

Vereinfache ((x^2-16)/(81-x^2)*(2x)/(x^2+10x+24))÷((x-4)/(x^2+15x+54))
Schritt 1
Um durch einen Bruch zu teilen, multipliziere mit seinem Kehrwert.
Schritt 2
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Schreibe als um.
Schritt 2.2
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 3
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Schreibe als um.
Schritt 3.2
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 4
Faktorisiere unter der Verwendung der AC-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 4.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 5
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.1.2
Forme den Ausdruck um.
Schritt 5.2
Mutltipliziere mit .
Schritt 5.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.2
Forme den Ausdruck um.
Schritt 5.4
Mutltipliziere mit .
Schritt 6
Faktorisiere unter der Verwendung der AC-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 6.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 7
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Kürze den gemeinsamen Faktor.
Schritt 7.2
Forme den Ausdruck um.
Schritt 8
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Stelle die Terme um.
Schritt 8.2
Kürze den gemeinsamen Faktor.
Schritt 8.3
Forme den Ausdruck um.