Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Setze in die Gleichung ein. Das macht die Quadratformel leicht anzuwenden.
Schritt 2
Schritt 2.1
Faktorisiere aus heraus.
Schritt 2.1.1
Faktorisiere aus heraus.
Schritt 2.1.2
Faktorisiere aus heraus.
Schritt 2.1.3
Faktorisiere aus heraus.
Schritt 2.1.4
Faktorisiere aus heraus.
Schritt 2.1.5
Faktorisiere aus heraus.
Schritt 2.2
Faktorisiere unter Verwendung der binomischen Formeln.
Schritt 2.2.1
Schreibe als um.
Schritt 2.2.2
Überprüfe, ob der mittlere Term das Zweifache des Produkts der Zahlen ist, die im ersten Term und im dritten Term quadriert werden.
Schritt 2.2.3
Schreibe das Polynom neu.
Schritt 2.2.4
Faktorisiere mithilfe der trinomischen Formel für das perfekte Quadrat , wobei und .
Schritt 3
Schritt 3.1
Teile jeden Ausdruck in durch .
Schritt 3.2
Vereinfache die linke Seite.
Schritt 3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.2
Dividiere durch .
Schritt 3.3
Vereinfache die rechte Seite.
Schritt 3.3.1
Dividiere durch .
Schritt 4
Setze gleich .
Schritt 5
Subtrahiere von beiden Seiten der Gleichung.
Schritt 6
Rücksubstituiere den tatsächlichen Wert von in die gelöste Gleichung.
Schritt 7
Schritt 7.1
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 7.2
Vereinfache .
Schritt 7.2.1
Schreibe als um.
Schritt 7.2.2
Schreibe als um.
Schritt 7.2.3
Schreibe als um.
Schritt 7.2.4
Schreibe als um.
Schritt 7.2.4.1
Faktorisiere aus heraus.
Schritt 7.2.4.2
Schreibe als um.
Schritt 7.2.5
Ziehe Terme aus der Wurzel heraus.
Schritt 7.2.6
Bringe auf die linke Seite von .
Schritt 7.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 7.3.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 7.3.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 7.3.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.