Algebra Beispiele

Vereinfache (x^2+2xy+y^2)/(x/y-y/x)
Schritt 1
Multipliziere den Zähler und Nenner des Bruches mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Mutltipliziere mit .
Schritt 1.2
Kombinieren.
Schritt 2
Wende das Distributivgesetz an.
Schritt 3
Vereinfache durch Kürzen.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Faktorisiere aus heraus.
Schritt 3.1.2
Kürze den gemeinsamen Faktor.
Schritt 3.1.3
Forme den Ausdruck um.
Schritt 3.2
Potenziere mit .
Schritt 3.3
Potenziere mit .
Schritt 3.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.5
Addiere und .
Schritt 3.6
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.6.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.6.2
Faktorisiere aus heraus.
Schritt 3.6.3
Kürze den gemeinsamen Faktor.
Schritt 3.6.4
Forme den Ausdruck um.
Schritt 3.7
Potenziere mit .
Schritt 3.8
Potenziere mit .
Schritt 3.9
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.10
Addiere und .
Schritt 4
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Bewege .
Schritt 4.1.2
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1
Potenziere mit .
Schritt 4.1.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.1.3
Addiere und .
Schritt 4.2
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 4.3
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Bewege .
Schritt 4.3.2
Mutltipliziere mit .
Schritt 4.4
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.1
Bewege .
Schritt 4.4.2
Mutltipliziere mit .
Schritt 4.5
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.5.1
Bewege .
Schritt 4.5.2
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.5.2.1
Potenziere mit .
Schritt 4.5.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.5.3
Addiere und .
Schritt 4.6
Schreibe in eine faktorisierte Form um.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.6.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.6.1.1
Faktorisiere aus heraus.
Schritt 4.6.1.2
Faktorisiere aus heraus.
Schritt 4.6.1.3
Faktorisiere aus heraus.
Schritt 4.6.1.4
Faktorisiere aus heraus.
Schritt 4.6.1.5
Faktorisiere aus heraus.
Schritt 4.6.2
Faktorisiere unter Verwendung der binomischen Formeln.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.6.2.1
Überprüfe, ob der mittlere Term das Zweifache des Produkts der Zahlen ist, die im ersten Term und im dritten Term quadriert werden.
Schritt 4.6.2.2
Schreibe das Polynom neu.
Schritt 4.6.2.3
Faktorisiere mithilfe der trinomischen Formel für das perfekte Quadrat , wobei und .
Schritt 5
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 6
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Faktorisiere aus heraus.
Schritt 6.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Kürze den gemeinsamen Faktor.
Schritt 6.2.2
Forme den Ausdruck um.