Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Schritt 1.1
Forme um.
Schritt 1.2
Vereinfache durch Addieren von Nullen.
Schritt 1.3
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 1.3.1
Wende das Distributivgesetz an.
Schritt 1.3.2
Wende das Distributivgesetz an.
Schritt 1.3.3
Wende das Distributivgesetz an.
Schritt 1.4
Vereinfache und fasse gleichartige Terme zusammen.
Schritt 1.4.1
Vereinfache jeden Term.
Schritt 1.4.1.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 1.4.1.2
Multipliziere mit durch Addieren der Exponenten.
Schritt 1.4.1.2.1
Bewege .
Schritt 1.4.1.2.2
Mutltipliziere mit .
Schritt 1.4.1.3
Mutltipliziere mit .
Schritt 1.4.1.4
Mutltipliziere mit .
Schritt 1.4.1.5
Mutltipliziere mit .
Schritt 1.4.2
Subtrahiere von .
Schritt 2
Schritt 2.1
Vereinfache jeden Term.
Schritt 2.1.1
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 2.1.1.1
Wende das Distributivgesetz an.
Schritt 2.1.1.2
Wende das Distributivgesetz an.
Schritt 2.1.1.3
Wende das Distributivgesetz an.
Schritt 2.1.2
Vereinfache und fasse gleichartige Terme zusammen.
Schritt 2.1.2.1
Vereinfache jeden Term.
Schritt 2.1.2.1.1
Multipliziere mit durch Addieren der Exponenten.
Schritt 2.1.2.1.1.1
Bewege .
Schritt 2.1.2.1.1.2
Mutltipliziere mit .
Schritt 2.1.2.1.2
Mutltipliziere mit .
Schritt 2.1.2.1.3
Mutltipliziere mit .
Schritt 2.1.2.2
Subtrahiere von .
Schritt 2.2
Addiere und .
Schritt 3
Schritt 3.1
Subtrahiere von beiden Seiten der Ungleichung.
Schritt 3.2
Addiere auf beiden Seiten der Ungleichung.
Schritt 3.3
Subtrahiere von .
Schritt 3.4
Addiere und .
Schritt 4
Wandle die Ungleichung in eine Gleichung um.
Schritt 5
Subtrahiere von beiden Seiten der Gleichung.
Schritt 6
Subtrahiere von .
Schritt 7
Schritt 7.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 7.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 8
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 9
Schritt 9.1
Setze gleich .
Schritt 9.2
Addiere zu beiden Seiten der Gleichung.
Schritt 10
Schritt 10.1
Setze gleich .
Schritt 10.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 11
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 12
Verwende jede Wurzel, um Testintervalle zu erzeugen.
Schritt 13
Schritt 13.1
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 13.1.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 13.1.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 13.1.3
Die linke Seite ist nicht kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
Falsch
Falsch
Schritt 13.2
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 13.2.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 13.2.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 13.2.3
Die linke Seite ist kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
Wahr
Wahr
Schritt 13.3
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 13.3.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 13.3.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 13.3.3
Die linke Seite ist nicht kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
Falsch
Falsch
Schritt 13.4
Vergleiche die Intervalle, um zu ermitteln, welche die ursprüngliche Ungleichung erfüllen.
Falsch
Wahr
Falsch
Falsch
Wahr
Falsch
Schritt 14
Die Lösung besteht aus allen wahren Intervallen.
Schritt 15
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Ungleichungsform:
Intervallschreibweise:
Schritt 16