Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Wandle die Ungleichung in eine Gleichung um.
Schritt 2
Schritt 2.1
Vereinfache die rechte Seite.
Schritt 2.1.1
Nutze die Quotienteneigenschaft von Logarithmen, .
Schritt 2.2
Damit die Gleichung erfüllt ist, müssen die Argumente der Logarithmen auf beiden Seiten der Gleichung gleich sein.
Schritt 2.3
Löse nach auf.
Schritt 2.3.1
Multipliziere beide Seiten mit .
Schritt 2.3.2
Vereinfache.
Schritt 2.3.2.1
Vereinfache die linke Seite.
Schritt 2.3.2.1.1
Bringe auf die linke Seite von .
Schritt 2.3.2.2
Vereinfache die rechte Seite.
Schritt 2.3.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.3.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.2.2.1.2
Forme den Ausdruck um.
Schritt 2.3.3
Bringe alle Terme, die enthalten, auf die linke Seite der Gleichung.
Schritt 2.3.3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.3.3.2
Subtrahiere von .
Schritt 3
Schritt 3.1
Setze das Argument in größer als , um zu ermitteln. wo der Ausdruck definiert ist.
Schritt 3.2
Löse nach auf.
Schritt 3.2.1
Bestimme alle die Werte, für die der Ausdruck von negativ nach positiv wechselt durch Gleichsetzen jedes Faktors mit und auflösen.
Schritt 3.2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.2.2.1
Teile jeden Ausdruck in durch .
Schritt 3.2.2.2
Vereinfache die linke Seite.
Schritt 3.2.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.2.2.1.2
Dividiere durch .
Schritt 3.2.2.3
Vereinfache die rechte Seite.
Schritt 3.2.2.3.1
Dividiere durch .
Schritt 3.2.3
Addiere zu beiden Seiten der Gleichung.
Schritt 3.2.4
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.2.4.1
Teile jeden Ausdruck in durch .
Schritt 3.2.4.2
Vereinfache die linke Seite.
Schritt 3.2.4.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.2.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.4.2.1.2
Dividiere durch .
Schritt 3.2.5
Löse für jeden Faktor, um die Werte zu ermitteln, wo der Absolutwert-Ausdruck von negativ nach positiv wechselt.
Schritt 3.2.6
Fasse die Lösungen zusammen.
Schritt 3.2.7
Bestimme den Definitionsbereich von .
Schritt 3.2.7.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 3.2.7.2
Löse nach auf.
Schritt 3.2.7.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.2.7.2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.2.7.2.2.1
Teile jeden Ausdruck in durch .
Schritt 3.2.7.2.2.2
Vereinfache die linke Seite.
Schritt 3.2.7.2.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.2.7.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.7.2.2.2.1.2
Dividiere durch .
Schritt 3.2.7.3
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Schritt 3.2.8
Verwende jede Wurzel, um Testintervalle zu erzeugen.
Schritt 3.2.9
Wähle einen Testwert aus jedem Intervall und setze diesen Wert in die ursprüngliche Ungleichung ein, um zu ermitteln, welche Intervalle die Ungleichung erfüllen.
Schritt 3.2.9.1
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 3.2.9.1.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 3.2.9.1.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 3.2.9.1.3
Die linke Seite ist größer als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
Wahr
Wahr
Schritt 3.2.9.2
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 3.2.9.2.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 3.2.9.2.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 3.2.9.2.3
Die linke Seite ist nicht größer als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
Falsch
Falsch
Schritt 3.2.9.3
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 3.2.9.3.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 3.2.9.3.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 3.2.9.3.3
Die linke Seite ist größer als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
Wahr
Wahr
Schritt 3.2.9.4
Vergleiche die Intervalle, um zu ermitteln, welche die ursprüngliche Ungleichung erfüllen.
Wahr
Falsch
Wahr
Wahr
Falsch
Wahr
Schritt 3.2.10
Die Lösung besteht aus allen wahren Intervallen.
oder
oder
Schritt 3.3
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 3.4
Löse nach auf.
Schritt 3.4.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.4.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.4.2.1
Teile jeden Ausdruck in durch .
Schritt 3.4.2.2
Vereinfache die linke Seite.
Schritt 3.4.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.4.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.4.2.2.1.2
Dividiere durch .
Schritt 3.5
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Schritt 4
Die Lösung besteht aus allen wahren Intervallen.
Schritt 5
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Ungleichungsform:
Intervallschreibweise:
Schritt 6