Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Kombiniere und .
Schritt 2
Schritt 2.1
Ersetze alle in durch .
Schritt 2.2
Vereinfache die linke Seite.
Schritt 2.2.1
Vereinfache .
Schritt 2.2.1.1
Vereinfache jeden Term.
Schritt 2.2.1.1.1
Schreibe als um.
Schritt 2.2.1.1.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 2.2.1.1.2.1
Wende das Distributivgesetz an.
Schritt 2.2.1.1.2.2
Wende das Distributivgesetz an.
Schritt 2.2.1.1.2.3
Wende das Distributivgesetz an.
Schritt 2.2.1.1.3
Vereinfache und fasse gleichartige Terme zusammen.
Schritt 2.2.1.1.3.1
Vereinfache jeden Term.
Schritt 2.2.1.1.3.1.1
Multipliziere .
Schritt 2.2.1.1.3.1.1.1
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.1.2
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.1.3
Potenziere mit .
Schritt 2.2.1.1.3.1.1.4
Potenziere mit .
Schritt 2.2.1.1.3.1.1.5
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.2.1.1.3.1.1.6
Addiere und .
Schritt 2.2.1.1.3.1.1.7
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.2
Multipliziere .
Schritt 2.2.1.1.3.1.2.1
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.2.2
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.2.3
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.3
Multipliziere .
Schritt 2.2.1.1.3.1.3.1
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.3.2
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.3.3
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.4
Multipliziere .
Schritt 2.2.1.1.3.1.4.1
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.4.2
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.4.3
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.4.4
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.4.5
Mutltipliziere mit .
Schritt 2.2.1.1.3.2
Subtrahiere von .
Schritt 2.2.1.1.4
Vereinfache jeden Term.
Schritt 2.2.1.1.4.1
Kürze den gemeinsamen Faktor von .
Schritt 2.2.1.1.4.1.1
Faktorisiere aus heraus.
Schritt 2.2.1.1.4.1.2
Faktorisiere aus heraus.
Schritt 2.2.1.1.4.1.3
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.1.4.1.4
Forme den Ausdruck um.
Schritt 2.2.1.1.4.2
Schreibe als um.
Schritt 2.2.1.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.2.1.3
Vereinfache Terme.
Schritt 2.2.1.3.1
Kombiniere und .
Schritt 2.2.1.3.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.2.1.3.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.2.1.4
Bringe auf die linke Seite von .
Schritt 2.2.1.5
Addiere und .
Schritt 2.2.1.6
Vereinfache jeden Term.
Schritt 2.2.1.6.1
Faktorisiere aus heraus.
Schritt 2.2.1.6.1.1
Faktorisiere aus heraus.
Schritt 2.2.1.6.1.2
Faktorisiere aus heraus.
Schritt 2.2.1.6.1.3
Faktorisiere aus heraus.
Schritt 2.2.1.6.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.2.1.7
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.2.1.8
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Schritt 2.2.1.8.1
Mutltipliziere mit .
Schritt 2.2.1.8.2
Mutltipliziere mit .
Schritt 2.2.1.9
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.2.1.10
Vereinfache den Zähler.
Schritt 2.2.1.10.1
Faktorisiere aus heraus.
Schritt 2.2.1.10.1.1
Faktorisiere aus heraus.
Schritt 2.2.1.10.1.2
Faktorisiere aus heraus.
Schritt 2.2.1.10.2
Mutltipliziere mit .
Schritt 2.2.1.10.3
Stelle die Terme um.
Schritt 3
Schritt 3.1
Multipliziere beide Seiten mit .
Schritt 3.2
Vereinfache.
Schritt 3.2.1
Vereinfache die linke Seite.
Schritt 3.2.1.1
Vereinfache .
Schritt 3.2.1.1.1
Kürze den gemeinsamen Faktor von .
Schritt 3.2.1.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.1.1.2
Forme den Ausdruck um.
Schritt 3.2.1.1.2
Wende das Distributivgesetz an.
Schritt 3.2.1.1.3
Vereinfache.
Schritt 3.2.1.1.3.1
Mutltipliziere mit .
Schritt 3.2.1.1.3.2
Mutltipliziere mit .
Schritt 3.2.2
Vereinfache die rechte Seite.
Schritt 3.2.2.1
Mutltipliziere mit .
Schritt 3.3
Löse nach auf.
Schritt 3.3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.3.2
Subtrahiere von .
Schritt 3.3.3
Faktorisiere die linke Seite der Gleichung.
Schritt 3.3.3.1
Faktorisiere aus heraus.
Schritt 3.3.3.1.1
Faktorisiere aus heraus.
Schritt 3.3.3.1.2
Faktorisiere aus heraus.
Schritt 3.3.3.1.3
Faktorisiere aus heraus.
Schritt 3.3.3.1.4
Faktorisiere aus heraus.
Schritt 3.3.3.1.5
Faktorisiere aus heraus.
Schritt 3.3.3.2
Faktorisiere unter Verwendung der binomischen Formeln.
Schritt 3.3.3.2.1
Schreibe als um.
Schritt 3.3.3.2.2
Überprüfe, ob der mittlere Term das Zweifache des Produkts der Zahlen ist, die im ersten Term und im dritten Term quadriert werden.
Schritt 3.3.3.2.3
Schreibe das Polynom neu.
Schritt 3.3.3.2.4
Faktorisiere mithilfe der trinomischen Formel für das perfekte Quadrat , wobei und .
Schritt 3.3.4
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.3.4.1
Teile jeden Ausdruck in durch .
Schritt 3.3.4.2
Vereinfache die linke Seite.
Schritt 3.3.4.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.3.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.4.2.1.2
Dividiere durch .
Schritt 3.3.4.3
Vereinfache die rechte Seite.
Schritt 3.3.4.3.1
Dividiere durch .
Schritt 3.3.5
Setze gleich .
Schritt 3.3.6
Addiere zu beiden Seiten der Gleichung.
Schritt 4
Schritt 4.1
Ersetze alle in durch .
Schritt 4.2
Vereinfache die rechte Seite.
Schritt 4.2.1
Vereinfache .
Schritt 4.2.1.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.2.1.2
Vereinfache den Ausdruck.
Schritt 4.2.1.2.1
Mutltipliziere mit .
Schritt 4.2.1.2.2
Subtrahiere von .
Schritt 4.2.1.2.3
Dividiere durch .
Schritt 5
Die Lösung des Systems ist der vollständige Satz geordneter Paare, die gültige Lösungen sind.
Schritt 6
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Punkt-Form:
Gleichungsform:
Schritt 7