Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Eliminiere die beiden gleichen Seiten jeder Gleichung und vereine.
Schritt 2
Schritt 2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.3
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 2.4
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 2.5
Vereinfache.
Schritt 2.5.1
Vereinfache den Zähler.
Schritt 2.5.1.1
Potenziere mit .
Schritt 2.5.1.2
Multipliziere .
Schritt 2.5.1.2.1
Mutltipliziere mit .
Schritt 2.5.1.2.2
Mutltipliziere mit .
Schritt 2.5.1.3
Addiere und .
Schritt 2.5.1.4
Schreibe als um.
Schritt 2.5.1.4.1
Faktorisiere aus heraus.
Schritt 2.5.1.4.2
Schreibe als um.
Schritt 2.5.1.5
Ziehe Terme aus der Wurzel heraus.
Schritt 2.5.2
Mutltipliziere mit .
Schritt 2.5.3
Vereinfache .
Schritt 2.6
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Schritt 2.6.1
Vereinfache den Zähler.
Schritt 2.6.1.1
Potenziere mit .
Schritt 2.6.1.2
Multipliziere .
Schritt 2.6.1.2.1
Mutltipliziere mit .
Schritt 2.6.1.2.2
Mutltipliziere mit .
Schritt 2.6.1.3
Addiere und .
Schritt 2.6.1.4
Schreibe als um.
Schritt 2.6.1.4.1
Faktorisiere aus heraus.
Schritt 2.6.1.4.2
Schreibe als um.
Schritt 2.6.1.5
Ziehe Terme aus der Wurzel heraus.
Schritt 2.6.2
Mutltipliziere mit .
Schritt 2.6.3
Vereinfache .
Schritt 2.6.4
Ändere das zu .
Schritt 2.7
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Schritt 2.7.1
Vereinfache den Zähler.
Schritt 2.7.1.1
Potenziere mit .
Schritt 2.7.1.2
Multipliziere .
Schritt 2.7.1.2.1
Mutltipliziere mit .
Schritt 2.7.1.2.2
Mutltipliziere mit .
Schritt 2.7.1.3
Addiere und .
Schritt 2.7.1.4
Schreibe als um.
Schritt 2.7.1.4.1
Faktorisiere aus heraus.
Schritt 2.7.1.4.2
Schreibe als um.
Schritt 2.7.1.5
Ziehe Terme aus der Wurzel heraus.
Schritt 2.7.2
Mutltipliziere mit .
Schritt 2.7.3
Vereinfache .
Schritt 2.7.4
Ändere das zu .
Schritt 2.8
Die endgültige Lösung ist die Kombination beider Lösungen.
Schritt 3
Schritt 3.1
Ersetze durch .
Schritt 3.2
Vereinfache .
Schritt 3.2.1
Vereinfache jeden Term.
Schritt 3.2.1.1
Wende das Distributivgesetz an.
Schritt 3.2.1.2
Mutltipliziere mit .
Schritt 3.2.2
Addiere und .
Schritt 4
Schritt 4.1
Ersetze durch .
Schritt 4.2
Vereinfache .
Schritt 4.2.1
Vereinfache jeden Term.
Schritt 4.2.1.1
Wende das Distributivgesetz an.
Schritt 4.2.1.2
Mutltipliziere mit .
Schritt 4.2.1.3
Mutltipliziere mit .
Schritt 4.2.2
Addiere und .
Schritt 5
Die Lösung des Systems ist der vollständige Satz geordneter Paare, die gültige Lösungen sind.
Schritt 6
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Punkt-Form:
Gleichungsform:
Schritt 7