Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Teile jeden Term in der Gleichung durch .
Schritt 2
Schritt 2.1
Kürze den gemeinsamen Faktor.
Schritt 2.2
Forme den Ausdruck um.
Schritt 3
Separiere Brüche.
Schritt 4
Wandle von nach um.
Schritt 5
Dividiere durch .
Schritt 6
Schreibe die Gleichung als um.
Schritt 7
Schritt 7.1
Teile jeden Ausdruck in durch .
Schritt 7.2
Vereinfache die linke Seite.
Schritt 7.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 7.2.2
Dividiere durch .
Schritt 7.3
Vereinfache die rechte Seite.
Schritt 7.3.1
Dividiere durch .
Schritt 8
Wende den inversen Tangens auf beide Seiten der Gleichung an, um aus dem Tangens herauszuziehen.
Schritt 9
Schritt 9.1
Der genau Wert von ist .
Schritt 10
Die Tangensfunktion ist negativ im zweiten und vierten Quadranten. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im dritten Quadranten zu finden.
Schritt 11
Schritt 11.1
Addiere zu .
Schritt 11.2
Der resultierende Winkel von ist positiv und gleich .
Schritt 12
Schritt 12.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 12.2
Ersetze durch in der Formel für die Periode.
Schritt 12.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 12.4
Dividiere durch .
Schritt 13
Schritt 13.1
Addiere zu , um den positiven Winkel zu bestimmen.
Schritt 13.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 13.3
Kombiniere Brüche.
Schritt 13.3.1
Kombiniere und .
Schritt 13.3.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 13.4
Vereinfache den Zähler.
Schritt 13.4.1
Bringe auf die linke Seite von .
Schritt 13.4.2
Subtrahiere von .
Schritt 13.5
Liste die neuen Winkel auf.
Schritt 14
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede Ganzzahl
Schritt 15
Fasse die Ergebnisse zusammen.
, für jede Ganzzahl