Algebra Beispiele

Stelle graphisch dar y=|cos(pix)|
Schritt 1
Bestimme den Scheitelpunkt des Absolutwerts. In diesem Fall ist der Scheitelpunkt für gleich .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Setze das Innere des Absolutwertes gleich , um die -Koordinate des Scheitelpunktes zu bestimmen. In diesem Fall: .
Schritt 1.2
Löse die Gleichung , um die -Koordinate der Absolutwert-Spitze zu ermitteln.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Wende den inversen Kosinus auf beide Seiten der Gleichung an, um aus dem Kosinus herauszuziehen.
Schritt 1.2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1
Der genau Wert von ist .
Schritt 1.2.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.1
Teile jeden Ausdruck in durch .
Schritt 1.2.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.3.2.1.2
Dividiere durch .
Schritt 1.2.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.3.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 1.2.3.3.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.3.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.3.3.2.2
Forme den Ausdruck um.
Schritt 1.2.4
Die Kosinusfunktion ist positiv im ersten und vierten Quadranten. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu finden.
Schritt 1.2.5
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.5.1
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.5.1.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.2.5.1.2
Kombiniere und .
Schritt 1.2.5.1.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.2.5.1.4
Mutltipliziere mit .
Schritt 1.2.5.1.5
Subtrahiere von .
Schritt 1.2.5.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.5.2.1
Teile jeden Ausdruck in durch .
Schritt 1.2.5.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.5.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.5.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.5.2.2.1.2
Dividiere durch .
Schritt 1.2.5.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.5.2.3.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 1.2.5.2.3.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.5.2.3.2.1
Faktorisiere aus heraus.
Schritt 1.2.5.2.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.2.5.2.3.2.3
Forme den Ausdruck um.
Schritt 1.2.6
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.6.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 1.2.6.2
Ersetze durch in der Formel für die Periode.
Schritt 1.2.6.3
ist ungefähr , was positiv ist, also entferne den Absolutwert
Schritt 1.2.6.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.6.4.2
Dividiere durch .
Schritt 1.2.7
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede Ganzzahl
Schritt 1.2.8
Fasse die Ergebnisse zusammen.
, für jede Ganzzahl
, für jede Ganzzahl
Schritt 1.3
Ersetze in dem Ausdruck die Variable durch .
Schritt 1.4
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1
Mutltipliziere mit .
Schritt 1.4.2
Wende das Distributivgesetz an.
Schritt 1.4.3
Kombiniere und .
Schritt 1.5
Die Absolutwert-Spitze ist .
Schritt 2
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 3
Der Absolutwert kann mithilfe der Punkte um den Scheitelpunkt graphisch dargestellt werden.
Schritt 4