Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Schritt 1.1
Setze das Innere des Absolutwertes gleich , um die -Koordinate des Scheitelpunktes zu bestimmen. In diesem Fall: .
Schritt 1.2
Löse die Gleichung , um die -Koordinate der Absolutwert-Spitze zu ermitteln.
Schritt 1.2.1
Wende den inversen Kosinus auf beide Seiten der Gleichung an, um aus dem Kosinus herauszuziehen.
Schritt 1.2.2
Vereinfache die rechte Seite.
Schritt 1.2.2.1
Der genau Wert von ist .
Schritt 1.2.3
Teile jeden Ausdruck in durch und vereinfache.
Schritt 1.2.3.1
Teile jeden Ausdruck in durch .
Schritt 1.2.3.2
Vereinfache die linke Seite.
Schritt 1.2.3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 1.2.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.3.2.1.2
Dividiere durch .
Schritt 1.2.3.3
Vereinfache die rechte Seite.
Schritt 1.2.3.3.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 1.2.3.3.2
Kürze den gemeinsamen Faktor von .
Schritt 1.2.3.3.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.3.3.2.2
Forme den Ausdruck um.
Schritt 1.2.4
Die Kosinusfunktion ist positiv im ersten und vierten Quadranten. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu finden.
Schritt 1.2.5
Löse nach auf.
Schritt 1.2.5.1
Vereinfache.
Schritt 1.2.5.1.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.2.5.1.2
Kombiniere und .
Schritt 1.2.5.1.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.2.5.1.4
Mutltipliziere mit .
Schritt 1.2.5.1.5
Subtrahiere von .
Schritt 1.2.5.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 1.2.5.2.1
Teile jeden Ausdruck in durch .
Schritt 1.2.5.2.2
Vereinfache die linke Seite.
Schritt 1.2.5.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 1.2.5.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.5.2.2.1.2
Dividiere durch .
Schritt 1.2.5.2.3
Vereinfache die rechte Seite.
Schritt 1.2.5.2.3.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 1.2.5.2.3.2
Kürze den gemeinsamen Faktor von .
Schritt 1.2.5.2.3.2.1
Faktorisiere aus heraus.
Schritt 1.2.5.2.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.2.5.2.3.2.3
Forme den Ausdruck um.
Schritt 1.2.6
Ermittele die Periode von .
Schritt 1.2.6.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 1.2.6.2
Ersetze durch in der Formel für die Periode.
Schritt 1.2.6.3
ist ungefähr , was positiv ist, also entferne den Absolutwert
Schritt 1.2.6.4
Kürze den gemeinsamen Faktor von .
Schritt 1.2.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.6.4.2
Dividiere durch .
Schritt 1.2.7
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede Ganzzahl
Schritt 1.2.8
Fasse die Ergebnisse zusammen.
, für jede Ganzzahl
, für jede Ganzzahl
Schritt 1.3
Ersetze in dem Ausdruck die Variable durch .
Schritt 1.4
Vereinfache .
Schritt 1.4.1
Mutltipliziere mit .
Schritt 1.4.2
Wende das Distributivgesetz an.
Schritt 1.4.3
Kombiniere und .
Schritt 1.5
Die Absolutwert-Spitze ist .
Schritt 2
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 3
Der Absolutwert kann mithilfe der Punkte um den Scheitelpunkt graphisch dargestellt werden.
Schritt 4