Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Ermittle, wo der Ausdruck nicht definiert ist.
Schritt 2
Die vertikalen Asymptoten treten in Bereichen einer unendlichen Unstetigkeit auf.
Keine vertikalen Asymptoten
Schritt 3
Betrachte die rationale Funktion , wobei der Grad des Zählers und der Grad des Nenners ist.
1. Wenn , dann ist die x-Achse, , die horizontale Asymptote.
2. Wenn , dann ist die horizontale Asymptote die Gerade .
3. Wenn , dann gibt es keine horizontale Asymptote (es gibt eine schiefe Asymptote).
Schritt 4
Ermittle und .
Schritt 5
Da , gibt es keine horizontale Asymptote.
Keine horizontalen Asymptoten
Schritt 6
Schritt 6.1
Kombinieren.
Schritt 6.1.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 6.1.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6.1.3
Faktorisiere aus heraus.
Schritt 6.1.3.1
Faktorisiere aus heraus.
Schritt 6.1.3.2
Faktorisiere aus heraus.
Schritt 6.1.3.3
Faktorisiere aus heraus.
Schritt 6.1.4
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 6.1.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6.1.6
Vereinfache den Zähler.
Schritt 6.1.6.1
Wende das Distributivgesetz an.
Schritt 6.1.6.2
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 6.1.6.3
Multipliziere mit durch Addieren der Exponenten.
Schritt 6.1.6.3.1
Bewege .
Schritt 6.1.6.3.2
Mutltipliziere mit .
Schritt 6.1.7
Vereinfache durch Herausfaktorisieren.
Schritt 6.1.7.1
Faktorisiere aus heraus.
Schritt 6.1.7.2
Faktorisiere aus heraus.
Schritt 6.1.7.3
Faktorisiere aus heraus.
Schritt 6.1.7.4
Faktorisiere aus heraus.
Schritt 6.1.7.5
Faktorisiere aus heraus.
Schritt 6.1.7.6
Vereinfache den Ausdruck.
Schritt 6.1.7.6.1
Schreibe als um.
Schritt 6.1.7.6.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 6.1.8
Vereinfache.
Schritt 6.2
Vereinfache den Ausdruck.
Schritt 6.2.1
Faktorisiere aus heraus.
Schritt 6.2.2
Faktorisiere aus heraus.
Schritt 6.2.3
Faktorisiere aus heraus.
Schritt 6.2.4
Faktorisiere aus heraus.
Schritt 6.2.5
Faktorisiere aus heraus.
Schritt 6.2.6
Vereinfache den Ausdruck.
Schritt 6.2.6.1
Schreibe als um.
Schritt 6.2.6.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 6.3
Multipliziere aus.
Schritt 6.3.1
Kehre das Vorzeichen von um.
Schritt 6.3.2
Wende das Distributivgesetz an.
Schritt 6.3.3
Wende das Distributivgesetz an.
Schritt 6.3.4
Entferne die Klammern.
Schritt 6.3.5
Entferne die Klammern.
Schritt 6.3.6
Versetze die Klammern.
Schritt 6.3.7
Entferne die Klammern.
Schritt 6.3.8
Mutltipliziere mit .
Schritt 6.3.9
Mutltipliziere mit .
Schritt 6.3.10
Mutltipliziere mit .
Schritt 6.3.11
Mutltipliziere mit .
Schritt 6.3.12
Bewege .
Schritt 6.3.13
Stelle und um.
Schritt 6.4
Stelle die zu dividierenden Polynome auf. Wenn es nicht für jeden Exponenten einen Term gibt, setze einen ein mit dem Wert .
| - | + | + |
Schritt 6.5
Dividiere den Term höchster Ordnung im Dividend durch den Term höchster Ordnung im Divisor .
| - | |||||||
| - | + | + |
Schritt 6.6
Multipliziere den neuen Bruchterm mit dem Teiler.
| - | |||||||
| - | + | + | |||||
| - |
Schritt 6.7
Der Ausdruck muss vom Dividenden abgezogen werden, ändere also alle Vorzeichen in
| - | |||||||
| - | + | + | |||||
| + |
Schritt 6.8
Addiere nach dem Wechsel der Vorzeichen den letzten Dividenden des ausmultiplizierten Polynoms, um den neuen Dividenden zu finden.
| - | |||||||
| - | + | + | |||||
| + | |||||||
Schritt 6.9
Ziehe die nächsten Terme vom ursprünglichen Dividenden nach unten in den aktuellen Dividenden.
| - | |||||||
| - | + | + | |||||
| + | |||||||
| + |
Schritt 6.10
Dividiere den Term höchster Ordnung im Dividend durch den Term höchster Ordnung im Divisor .
| - | + | ||||||
| - | + | + | |||||
| + | |||||||
| + |
Schritt 6.11
Multipliziere den neuen Bruchterm mit dem Teiler.
| - | + | ||||||
| - | + | + | |||||
| + | |||||||
| + | |||||||
| + |
Schritt 6.12
Der Ausdruck muss vom Dividenden abgezogen werden, ändere also alle Vorzeichen in
| - | + | ||||||
| - | + | + | |||||
| + | |||||||
| + | |||||||
| - |
Schritt 6.13
Addiere nach dem Wechsel der Vorzeichen den letzten Dividenden des ausmultiplizierten Polynoms, um den neuen Dividenden zu finden.
| - | + | ||||||
| - | + | + | |||||
| + | |||||||
| + | |||||||
| - | |||||||
Schritt 6.14
Ziehe die nächsten Terme vom ursprünglichen Dividenden nach unten in den aktuellen Dividenden.
| - | + | ||||||
| - | + | + | |||||
| + | |||||||
| + | |||||||
| - | |||||||
| + |
Schritt 6.15
Die endgültige Lösung ist der Quotient plus dem Rest geteilt durch den Divisor.
Schritt 6.16
Die schiefe Asymptote ist der Polynomteil des Ergebnisses der schriftlichen Division.
Schritt 7
Das ist die Menge aller Asymptoten.
Keine vertikalen Asymptoten
Keine horizontalen Asymptoten
Schiefe Asymptoten:
Schritt 8