Algebra Beispiele

Dividiere (x^3+x^2-x-1)÷(x^2+2x+1)
Schritt 1
Schreibe die Division um als einen Bruch.
Schritt 2
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 2.1.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 2.2
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 2.3
Schreibe als um.
Schritt 2.4
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 2.5
Kombiniere Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1
Potenziere mit .
Schritt 2.5.2
Potenziere mit .
Schritt 2.5.3
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.5.4
Addiere und .
Schritt 3
Faktorisiere unter Verwendung der binomischen Formeln.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Schreibe als um.
Schritt 3.2
Überprüfe, ob der mittlere Term das Zweifache des Produkts der Zahlen ist, die im ersten Term und im dritten Term quadriert werden.
Schritt 3.3
Schreibe das Polynom neu.
Schritt 3.4
Faktorisiere mithilfe der trinomischen Formel für das perfekte Quadrat , wobei und .
Schritt 4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Kürze den gemeinsamen Faktor.
Schritt 4.2
Dividiere durch .