Algebra Beispiele

Beschreibe die Transformation y = square root of 1/2x
Schritt 1
Die Mutterfunktion ist die einfachste Form des gegebenen Funktionstypen.
Schritt 2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Kombiniere und .
Schritt 2.2
Schreibe als um.
Schritt 2.3
Mutltipliziere mit .
Schritt 2.4
Vereinige und vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Mutltipliziere mit .
Schritt 2.4.2
Potenziere mit .
Schritt 2.4.3
Potenziere mit .
Schritt 2.4.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.4.5
Addiere und .
Schritt 2.4.6
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.6.1
Benutze , um als neu zu schreiben.
Schritt 2.4.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.4.6.3
Kombiniere und .
Schritt 2.4.6.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 2.4.6.4.2
Forme den Ausdruck um.
Schritt 2.4.6.5
Berechne den Exponenten.
Schritt 2.5
Kombiniere unter Anwendung der Produktregel für das Wurzelziehen.
Schritt 2.6
Stelle die Faktoren in um.
Schritt 3
Nehme an, dass ist und ist .
Schritt 4
Die Transformation von der ersten Gleichung zur zweiten kann bestimmt werden, indem , und für jede Gleichung gefunden wird.
Schritt 5
Faktorisiere ein aus dem Absolutwert heraus, um den Koeffizienten von gleich zu machen.
Schritt 6
Faktorisiere ein aus dem Absolutwert heraus, um den Koeffizienten von gleich zu machen.
Schritt 7
Ermittle , und für .
Schritt 8
Die horizontale Verschiebung hängt vom Wert von ab. Für wird die horizontale Verschiebung beschrieben als:
– Der Graph ist um Einheiten nach links verschoben.
– Der Graph ist um Einheiten nach rechts verschoben.
Horizontale Verschiebung: Keine
Schritt 9
Die vertikale Verschiebung hängt vom Wert von ab. Für wird die vertikale Verschiebung beschrieben als:
- Der Graph ist um Einheiten nach oben verschoben.
- The graph is shifted down units.
Vertikale Verschiebung: Keine
Schritt 10
Das Vorzeichen von beschreibt die Spiegelung an der x-Achse. bedeutet, dass der Graph an der x-Achse gespiegelt wird.
Spiegelung an der x-Achse: Keine
Schritt 11
Der Wert von beschreibt die vertikale Streckung oder Stauchung des Graphen.
ist eine vertikale Streckung (macht ihn schmaler)
ist eine vertikale Stauchung (macht ihn breiter)
Vertikale Stauchung: Gestaucht
Schritt 12
Um die Transformation zu bestimmen, vergleiche die beiden Funktionen und überprüfe, ob es eine horizontale oder vertikale Verschiebung, eine Spiegelung an der x-Achse und eine vertikale Streckung gibt.
Mutterfunktion:
Horizontale Verschiebung: Keine
Vertikale Verschiebung: Keine
Spiegelung an der x-Achse: Keine
Vertikale Stauchung: Gestaucht
Schritt 13