Algebra Beispiele

Vereinfache (14x^2)^-4(3x)^4(13x^6)^2
Schritt 1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 2
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Wende die Produktregel auf an.
Schritt 2.2
Potenziere mit .
Schritt 2.3
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.3.2
Mutltipliziere mit .
Schritt 3
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Wende die Produktregel auf an.
Schritt 3.2
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.2.2
Potenziere mit .
Schritt 3.3
Kombiniere und .
Schritt 3.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Faktorisiere aus heraus.
Schritt 3.4.2
Kürze den gemeinsamen Faktor.
Schritt 3.4.3
Forme den Ausdruck um.
Schritt 3.5
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.1
Wende die Produktregel auf an.
Schritt 3.5.2
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.5.3
Potenziere mit .
Schritt 4
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Kombiniere und .
Schritt 4.2
Mutltipliziere mit .
Schritt 5
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 5.2
Mutltipliziere mit .
Schritt 6
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Faktorisiere aus heraus.
Schritt 6.2
Faktorisiere aus heraus.
Schritt 6.3
Kürze den gemeinsamen Faktor.
Schritt 6.4
Forme den Ausdruck um.
Schritt 7
Kombiniere und .