Gib eine Aufgabe ein ...
Algebra Beispiele
,
Schritt 1
und sind die beiden voneinander verschiedenen reellen Lösungen für die quadratische Gleichung, was bedeutet, dass und die Faktoren der quadratischen Gleichung sind.
Schritt 2
Schritt 2.1
Schreibe als um.
Schritt 2.1.1
Faktorisiere aus heraus.
Schritt 2.1.2
Schreibe als um.
Schritt 2.2
Ziehe Terme aus der Wurzel heraus.
Schritt 2.3
Mutltipliziere mit .
Schritt 3
Schritt 3.1
Wende das Distributivgesetz an.
Schritt 3.2
Wende das Distributivgesetz an.
Schritt 3.3
Wende das Distributivgesetz an.
Schritt 4
Schritt 4.1
Vereinfache jeden Term.
Schritt 4.1.1
Mutltipliziere mit .
Schritt 4.1.2
Multipliziere .
Schritt 4.1.2.1
Mutltipliziere mit .
Schritt 4.1.2.2
Potenziere mit .
Schritt 4.1.2.3
Potenziere mit .
Schritt 4.1.2.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.1.2.5
Addiere und .
Schritt 4.1.3
Schreibe als um.
Schritt 4.1.3.1
Benutze , um als neu zu schreiben.
Schritt 4.1.3.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.1.3.3
Kombiniere und .
Schritt 4.1.3.4
Kürze den gemeinsamen Faktor von .
Schritt 4.1.3.4.1
Kürze den gemeinsamen Faktor.
Schritt 4.1.3.4.2
Forme den Ausdruck um.
Schritt 4.1.3.5
Berechne den Exponenten.
Schritt 4.1.4
Mutltipliziere mit .
Schritt 4.2
Stelle die Faktoren von um.
Schritt 4.3
Subtrahiere von .
Schritt 4.3.1
Stelle und um.
Schritt 4.3.2
Subtrahiere von .
Schritt 5
Die Normalform der quadratischen Gleichung basierend auf der gegebenen Lösungsmenge ist .
Schritt 6