Algebra Beispiele

Vereinfache (1/(x-1)-(3x)/(x^3-1)-3/(x^2+x+1))÷((x^2-5x+4)/(x^2+x+1))
Schritt 1
Um durch einen Bruch zu teilen, multipliziere mit seinem Kehrwert.
Schritt 2
Faktorisiere unter der Verwendung der AC-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 2.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 3
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Schreibe als um.
Schritt 3.2
Da beide Terme perfekte Terme zur dritten Potenz sind, faktorisiere mithilfe der Formel für die Differenz kubischer Terme, , mit und .
Schritt 3.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Mutltipliziere mit .
Schritt 3.3.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 4
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 5
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Mutltipliziere mit .
Schritt 5.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.3
Subtrahiere von .
Schritt 6
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Faktorisiere unter Verwendung der binomischen Formeln.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1
Schreibe als um.
Schritt 6.1.2
Überprüfe, ob der mittlere Term das Zweifache des Produkts der Zahlen ist, die im ersten Term und im dritten Term quadriert werden.
Schritt 6.1.3
Schreibe das Polynom neu.
Schritt 6.1.4
Faktorisiere mithilfe der trinomischen Formel für das perfekte Quadrat , wobei und .
Schritt 6.2
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Faktorisiere aus heraus.
Schritt 6.2.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 6.2.2.2
Forme den Ausdruck um.
Schritt 7
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 7.2
Subtrahiere von .
Schritt 7.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.1
Kürze den gemeinsamen Faktor.
Schritt 7.3.2
Forme den Ausdruck um.
Schritt 7.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.4.1
Kürze den gemeinsamen Faktor.
Schritt 7.4.2
Forme den Ausdruck um.