Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2
Schritt 2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 2.2
Das kleinste gemeinsame Vielfache eines beliebigen Ausdrucks ist der Ausdruck.
Schritt 3
Schritt 3.1
Multipliziere jeden Term in mit .
Schritt 3.2
Vereinfache die linke Seite.
Schritt 3.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.2.1.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.2.1.2
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.3
Forme den Ausdruck um.
Schritt 3.3
Vereinfache die rechte Seite.
Schritt 3.3.1
Mutltipliziere mit .
Schritt 4
Schritt 4.1
Schreibe die Gleichung als um.
Schritt 4.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 4.2.1
Teile jeden Ausdruck in durch .
Schritt 4.2.2
Vereinfache die linke Seite.
Schritt 4.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.2.2
Dividiere durch .
Schritt 4.2.3
Vereinfache die rechte Seite.
Schritt 4.2.3.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 4.3
Potenziere jede Seite der Gleichung mit , um den gebrochenen Exponenten auf der linken Seite zu eliminieren.
Schritt 4.4
Vereinfache den Exponenten.
Schritt 4.4.1
Vereinfache die linke Seite.
Schritt 4.4.1.1
Vereinfache .
Schritt 4.4.1.1.1
Multipliziere die Exponenten in .
Schritt 4.4.1.1.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.4.1.1.1.2
Kürze den gemeinsamen Faktor von .
Schritt 4.4.1.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 4.4.1.1.1.2.2
Forme den Ausdruck um.
Schritt 4.4.1.1.1.3
Kürze den gemeinsamen Faktor von .
Schritt 4.4.1.1.1.3.1
Kürze den gemeinsamen Faktor.
Schritt 4.4.1.1.1.3.2
Forme den Ausdruck um.
Schritt 4.4.1.1.2
Vereinfache.
Schritt 4.4.2
Vereinfache die rechte Seite.
Schritt 4.4.2.1
Vereinfache .
Schritt 4.4.2.1.1
Wende die Produktregel auf an.
Schritt 4.4.2.1.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 4.5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 4.5.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 4.5.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 4.5.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 5
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: