Algebra Beispiele

x 구하기 logarithmische Basis 6 von 3x^2-3- logarithmische Basis 6 von 4x+4=0
Schritt 1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Nutze die Quotienteneigenschaft von Logarithmen, .
Schritt 1.2
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1.1
Faktorisiere aus heraus.
Schritt 1.2.1.2
Faktorisiere aus heraus.
Schritt 1.2.1.3
Faktorisiere aus heraus.
Schritt 1.2.2
Schreibe als um.
Schritt 1.2.3
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 1.3
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1.1
Faktorisiere aus heraus.
Schritt 1.3.1.2
Faktorisiere aus heraus.
Schritt 1.3.1.3
Faktorisiere aus heraus.
Schritt 1.3.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.3.2.2
Forme den Ausdruck um.
Schritt 2
Schreibe in eine Exponentialform indem du die Definition des Logarithmus verwendest. Wenn und positive reelle Zahlen sind und ist, dann ist gleich .
Schritt 3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Schreibe die Gleichung als um.
Schritt 3.2
Multipliziere beide Seiten der Gleichung mit .
Schritt 3.3
Vereinfache beide Seiten der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.1.1.1.2
Forme den Ausdruck um.
Schritt 3.3.1.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.1.1.2.2
Forme den Ausdruck um.
Schritt 3.3.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1.1
Alles, was mit potenziert wird, ist .
Schritt 3.3.2.1.2
Mutltipliziere mit .
Schritt 3.4
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.4.2
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 3.4.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.4.4
Addiere und .
Schritt 4
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform:
Darstellung als gemischte Zahl: