Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Schritt 1.1
Setze das Innere des Absolutwertes gleich , um die -Koordinate des Scheitelpunktes zu bestimmen. In diesem Fall: .
Schritt 1.2
Ersetze in dem Ausdruck die Variable durch .
Schritt 1.3
Vereinfache .
Schritt 1.3.1
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 1.3.2
Vereinfache den Ausdruck.
Schritt 1.3.2.1
Schreibe als um.
Schritt 1.3.2.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.3.3
Kürze den gemeinsamen Faktor von .
Schritt 1.3.3.1
Kürze den gemeinsamen Faktor.
Schritt 1.3.3.2
Forme den Ausdruck um.
Schritt 1.3.4
Berechne den Exponenten.
Schritt 1.4
Die Absolutwert-Spitze ist .
Schritt 2
Schritt 2.1
Wandel Ausdrücke mit gebrochenen Exponenten in Wurzeln um.
Schritt 2.1.1
Wende die Regel an, um die Potenz als Wurzel umzuschreiben.
Schritt 2.1.2
Alles, was auf angehoben wird, ist die Basis selbst.
Schritt 2.2
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 3
Schritt 3.1
Setze den -Wert in ein. In diesem Fall ist der Punkt .
Schritt 3.1.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.1.2
Vereinfache das Ergebnis.
Schritt 3.1.2.1
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 3.1.2.2
Die endgültige Lösung ist .
Schritt 3.2
Setze den -Wert in ein. In diesem Fall ist der Punkt .
Schritt 3.2.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.2.2
Vereinfache das Ergebnis.
Schritt 3.2.2.1
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 3.2.2.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 3.2.2.3
Die endgültige Lösung ist .
Schritt 3.3
Setze den -Wert in ein. In diesem Fall ist der Punkt .
Schritt 3.3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.3.2
Vereinfache das Ergebnis.
Schritt 3.3.2.1
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 3.3.2.2
Die endgültige Lösung ist .
Schritt 3.4
Der Absolutwert kann mithilfe der Punkte um den Scheitelpunkt graphisch dargestellt werden.
Schritt 4