Algebra Beispiele

x 구하기 |(2x+7)/(x-1)|>=1
Schritt 1
Schreibe als abschnittsweise Funktion.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Um das Intervall für den ersten Teil zu bestimmen, ermittele, wo das Innere des Absolutwertes nicht negativ ist.
Schritt 1.2
Löse die Ungleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Bestimme alle die Werte, für die der Ausdruck von negativ nach positiv wechselt durch Gleichsetzen jedes Faktors mit und auflösen.
Schritt 1.2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.1
Teile jeden Ausdruck in durch .
Schritt 1.2.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.3.2.1.2
Dividiere durch .
Schritt 1.2.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.2.4
Addiere zu beiden Seiten der Gleichung.
Schritt 1.2.5
Löse für jeden Faktor, um die Werte zu ermitteln, wo der Absolutwert-Ausdruck von negativ nach positiv wechselt.
Schritt 1.2.6
Fasse die Lösungen zusammen.
Schritt 1.2.7
Bestimme den Definitionsbereich von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.7.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 1.2.7.2
Addiere zu beiden Seiten der Gleichung.
Schritt 1.2.7.3
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Schritt 1.2.8
Verwende jede Wurzel, um Testintervalle zu erzeugen.
Schritt 1.2.9
Wähle einen Testwert aus jedem Intervall und setze diesen Wert in die ursprüngliche Ungleichung ein, um zu ermitteln, welche Intervalle die Ungleichung erfüllen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.9.1
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.9.1.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 1.2.9.1.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 1.2.9.1.3
Die linke Seite ist größer als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
Wahr
Wahr
Schritt 1.2.9.2
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.9.2.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 1.2.9.2.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 1.2.9.2.3
Die linke Seite ist kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
Falsch
Falsch
Schritt 1.2.9.3
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.9.3.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 1.2.9.3.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 1.2.9.3.3
Die linke Seite ist größer als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
Wahr
Wahr
Schritt 1.2.9.4
Vergleiche die Intervalle, um zu ermitteln, welche die ursprüngliche Ungleichung erfüllen.
Wahr
Falsch
Wahr
Wahr
Falsch
Wahr
Schritt 1.2.10
Die Lösung besteht aus allen wahren Intervallen.
oder
oder
Schritt 1.3
Entferne den Absolutwert in dem Teil, in dem nicht negativ ist.
Schritt 1.4
Bestimme den Definitionsbereich von und ermittle die Schnittmenge mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1
Bestimme den Definitionsbereich von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 1.4.1.2
Addiere zu beiden Seiten der Gleichung.
Schritt 1.4.1.3
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Schritt 1.4.2
Bestimme die Schnittmenge von und .
Schritt 1.5
Um das Intervall für den zweiten Teil zu bestimmen, ermittele, wo das Innere des Absolutwertes negativ ist.
Schritt 1.6
Löse die Ungleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.6.1
Bestimme alle die Werte, für die der Ausdruck von negativ nach positiv wechselt durch Gleichsetzen jedes Faktors mit und auflösen.
Schritt 1.6.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.6.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.6.3.1
Teile jeden Ausdruck in durch .
Schritt 1.6.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.6.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.6.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.6.3.2.1.2
Dividiere durch .
Schritt 1.6.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.6.3.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.6.4
Addiere zu beiden Seiten der Gleichung.
Schritt 1.6.5
Löse für jeden Faktor, um die Werte zu ermitteln, wo der Absolutwert-Ausdruck von negativ nach positiv wechselt.
Schritt 1.6.6
Fasse die Lösungen zusammen.
Schritt 1.6.7
Bestimme den Definitionsbereich von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.6.7.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 1.6.7.2
Addiere zu beiden Seiten der Gleichung.
Schritt 1.6.7.3
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Schritt 1.6.8
Verwende jede Wurzel, um Testintervalle zu erzeugen.
Schritt 1.6.9
Wähle einen Testwert aus jedem Intervall und setze diesen Wert in die ursprüngliche Ungleichung ein, um zu ermitteln, welche Intervalle die Ungleichung erfüllen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.6.9.1
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.6.9.1.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 1.6.9.1.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 1.6.9.1.3
Die linke Seite ist nicht kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
Falsch
Falsch
Schritt 1.6.9.2
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.6.9.2.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 1.6.9.2.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 1.6.9.2.3
Die linke Seite ist kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
Wahr
Wahr
Schritt 1.6.9.3
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.6.9.3.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 1.6.9.3.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 1.6.9.3.3
Die linke Seite ist nicht kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
Falsch
Falsch
Schritt 1.6.9.4
Vergleiche die Intervalle, um zu ermitteln, welche die ursprüngliche Ungleichung erfüllen.
Falsch
Wahr
Falsch
Falsch
Wahr
Falsch
Schritt 1.6.10
Die Lösung besteht aus allen wahren Intervallen.
Schritt 1.7
Entferne den Absolutwert und multipliziere mit in dem Teil, in dem negativ ist.
Schritt 1.8
Bestimme den Definitionsbereich von und ermittle die Schnittmenge mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.8.1
Bestimme den Definitionsbereich von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.8.1.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 1.8.1.2
Addiere zu beiden Seiten der Gleichung.
Schritt 1.8.1.3
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Schritt 1.8.2
Bestimme die Schnittmenge von und .
Schritt 1.9
Schreibe als eine abschnittsweise Funktion.
Schritt 2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Subtrahiere von beiden Seiten der Ungleichung.
Schritt 2.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.2.2
Kombiniere und .
Schritt 2.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.2.4
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.4.1
Wende das Distributivgesetz an.
Schritt 2.2.4.2
Mutltipliziere mit .
Schritt 2.2.4.3
Subtrahiere von .
Schritt 2.2.4.4
Addiere und .
Schritt 2.3
Bestimme alle die Werte, für die der Ausdruck von negativ nach positiv wechselt durch Gleichsetzen jedes Faktors mit und auflösen.
Schritt 2.4
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.5
Addiere zu beiden Seiten der Gleichung.
Schritt 2.6
Löse für jeden Faktor, um die Werte zu ermitteln, wo der Absolutwert-Ausdruck von negativ nach positiv wechselt.
Schritt 2.7
Fasse die Lösungen zusammen.
Schritt 2.8
Bestimme den Definitionsbereich von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.8.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 2.8.2
Addiere zu beiden Seiten der Gleichung.
Schritt 2.8.3
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Schritt 2.9
Verwende jede Wurzel, um Testintervalle zu erzeugen.
Schritt 2.10
Wähle einen Testwert aus jedem Intervall und setze diesen Wert in die ursprüngliche Ungleichung ein, um zu ermitteln, welche Intervalle die Ungleichung erfüllen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.10.1
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.10.1.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 2.10.1.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 2.10.1.3
Die linke Seite ist größer als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
Wahr
Wahr
Schritt 2.10.2
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.10.2.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 2.10.2.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 2.10.2.3
Die linke Seite ist kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
Falsch
Falsch
Schritt 2.10.3
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.10.3.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 2.10.3.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 2.10.3.3
Die linke Seite ist größer als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
Wahr
Wahr
Schritt 2.10.4
Vergleiche die Intervalle, um zu ermitteln, welche die ursprüngliche Ungleichung erfüllen.
Wahr
Falsch
Wahr
Wahr
Falsch
Wahr
Schritt 2.11
Die Lösung besteht aus allen wahren Intervallen.
oder
oder
Schritt 3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Subtrahiere von beiden Seiten der Ungleichung.
Schritt 3.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.2.2
Kombiniere und .
Schritt 3.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.2.4
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.4.1
Faktorisiere aus heraus.
Schritt 3.2.4.2
Addiere und .
Schritt 3.2.4.3
Subtrahiere von .
Schritt 3.2.4.4
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.4.4.1
Faktorisiere aus heraus.
Schritt 3.2.4.4.2
Faktorisiere aus heraus.
Schritt 3.2.4.4.3
Faktorisiere aus heraus.
Schritt 3.2.4.5
Mutltipliziere mit .
Schritt 3.2.5
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.3
Bestimme alle die Werte, für die der Ausdruck von negativ nach positiv wechselt durch Gleichsetzen jedes Faktors mit und auflösen.
Schritt 3.4
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.5
Addiere zu beiden Seiten der Gleichung.
Schritt 3.6
Löse für jeden Faktor, um die Werte zu ermitteln, wo der Absolutwert-Ausdruck von negativ nach positiv wechselt.
Schritt 3.7
Fasse die Lösungen zusammen.
Schritt 3.8
Bestimme den Definitionsbereich von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.8.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 3.8.2
Addiere zu beiden Seiten der Gleichung.
Schritt 3.8.3
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Schritt 3.9
Verwende jede Wurzel, um Testintervalle zu erzeugen.
Schritt 3.10
Wähle einen Testwert aus jedem Intervall und setze diesen Wert in die ursprüngliche Ungleichung ein, um zu ermitteln, welche Intervalle die Ungleichung erfüllen.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.10.1
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.10.1.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 3.10.1.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 3.10.1.3
Die linke Seite ist kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
Falsch
Falsch
Schritt 3.10.2
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.10.2.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 3.10.2.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 3.10.2.3
Die linke Seite ist größer als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
Wahr
Wahr
Schritt 3.10.3
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.10.3.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 3.10.3.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 3.10.3.3
Die linke Seite ist kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
Falsch
Falsch
Schritt 3.10.4
Vergleiche die Intervalle, um zu ermitteln, welche die ursprüngliche Ungleichung erfüllen.
Falsch
Wahr
Falsch
Falsch
Wahr
Falsch
Schritt 3.11
Die Lösung besteht aus allen wahren Intervallen.
Schritt 4
Ermittele die Vereinigungsmenge der Lösungen.
oder
Schritt 5
Bestimme den Definitionsbereich von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 5.2
Addiere zu beiden Seiten der Gleichung.
Schritt 5.3
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Schritt 6
Verwende jede Wurzel, um Testintervalle zu erzeugen.
Schritt 7
Wähle einen Testwert aus jedem Intervall und setze diesen Wert in die ursprüngliche Ungleichung ein, um zu ermitteln, welche Intervalle die Ungleichung erfüllen.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 7.1.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 7.1.3
Die linke Seite ist größer als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
Wahr
Wahr
Schritt 7.2
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 7.2.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 7.2.3
Die linke Seite ist kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
Falsch
Falsch
Schritt 7.3
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 7.3.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 7.3.3
Die linke Seite ist größer als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
Wahr
Wahr
Schritt 7.4
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.4.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 7.4.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 7.4.3
Die linke Seite ist größer als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
Wahr
Wahr
Schritt 7.5
Vergleiche die Intervalle, um zu ermitteln, welche die ursprüngliche Ungleichung erfüllen.
Wahr
Falsch
Wahr
Wahr
Wahr
Falsch
Wahr
Wahr
Schritt 8
Die Lösung besteht aus allen wahren Intervallen.
oder oder
Schritt 9
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Ungleichungsform:
Intervallschreibweise:
Schritt 10