Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Subtrahiere von beiden Seiten der Ungleichung.
Schritt 2
Schritt 2.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.2
Kombiniere und .
Schritt 2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.4
Vereinfache den Zähler.
Schritt 2.4.1
Wende das Distributivgesetz an.
Schritt 2.4.2
Mutltipliziere mit .
Schritt 2.4.3
Stelle die Terme um.
Schritt 2.5
Faktorisiere aus heraus.
Schritt 2.6
Faktorisiere aus heraus.
Schritt 2.7
Faktorisiere aus heraus.
Schritt 2.8
Schreibe als um.
Schritt 2.9
Faktorisiere aus heraus.
Schritt 2.10
Schreibe als um.
Schritt 2.11
Ziehe das Minuszeichen vor den Bruch.
Schritt 3
Bestimme alle die Werte, für die der Ausdruck von negativ nach positiv wechselt durch Gleichsetzen jedes Faktors mit und auflösen.
Schritt 4
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 5
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 6
Schritt 6.1
Vereinfache den Zähler.
Schritt 6.1.1
Potenziere mit .
Schritt 6.1.2
Multipliziere .
Schritt 6.1.2.1
Mutltipliziere mit .
Schritt 6.1.2.2
Mutltipliziere mit .
Schritt 6.1.3
Subtrahiere von .
Schritt 6.1.4
Schreibe als um.
Schritt 6.1.5
Schreibe als um.
Schritt 6.1.6
Schreibe als um.
Schritt 6.2
Mutltipliziere mit .
Schritt 7
Die endgültige Lösung ist die Kombination beider Lösungen.
Schritt 8
Subtrahiere von beiden Seiten der Gleichung.
Schritt 9
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 10
Schreibe als um.
Schritt 11
Schritt 11.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 11.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 11.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 12
Löse für jeden Faktor, um die Werte zu ermitteln, wo der Absolutwert-Ausdruck von negativ nach positiv wechselt.
Schritt 13
Der Leitkoeffizient kann nicht ermittelt werden, da kein Polynom ist.
Kein Polynom
Schritt 14
Da es keine reellen x-Achsenabschnitte gibt und der Leitkoeffizient positiv ist, ist die Parabel nach oben geöffnet und ist immer größer als .
Keine Lösung