Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Ersetze die durch basierend auf der -Identitätsgleichung.
Schritt 2
Ersetze durch .
Schritt 3
Schritt 3.1
Forme um.
Schritt 3.2
Vereinfache durch Addieren von Nullen.
Schritt 3.3
Kombiniere und .
Schritt 4
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5
Schritt 5.1
Wende das Distributivgesetz an.
Schritt 5.2
Vereinfache.
Schritt 5.2.1
Mutltipliziere mit .
Schritt 5.2.2
Kürze den gemeinsamen Faktor von .
Schritt 5.2.2.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 5.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.2.2.3
Forme den Ausdruck um.
Schritt 5.3
Bewege .
Schritt 6
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 7
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 8
Schritt 8.1
Vereinfache den Zähler.
Schritt 8.1.1
Potenziere mit .
Schritt 8.1.2
Multipliziere .
Schritt 8.1.2.1
Mutltipliziere mit .
Schritt 8.1.2.2
Mutltipliziere mit .
Schritt 8.1.3
Addiere und .
Schritt 8.1.4
Schreibe als um.
Schritt 8.1.5
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 8.2
Mutltipliziere mit .
Schritt 9
Die endgültige Lösung ist die Kombination beider Lösungen.
Schritt 10
Ersetze durch .
Schritt 11
Stelle jede der Lösungen auf, um sie nach aufzulösen.
Schritt 12
Schritt 12.1
Bilde den inversen Sekans von beiden Seiten der Gleichung, um aus dem Sekans zu ziehen.
Schritt 12.2
Vereinfache die rechte Seite.
Schritt 12.2.1
Der genau Wert von ist .
Schritt 12.3
DIe Sekans-Funktion ist im ersten und vierten Quadranten positiv. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu finden.
Schritt 12.4
Vereinfache .
Schritt 12.4.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 12.4.2
Kombiniere Brüche.
Schritt 12.4.2.1
Kombiniere und .
Schritt 12.4.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 12.4.3
Vereinfache den Zähler.
Schritt 12.4.3.1
Mutltipliziere mit .
Schritt 12.4.3.2
Subtrahiere von .
Schritt 12.5
Ermittele die Periode von .
Schritt 12.5.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 12.5.2
Ersetze durch in der Formel für die Periode.
Schritt 12.5.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 12.5.4
Dividiere durch .
Schritt 12.6
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede Ganzzahl
, für jede Ganzzahl
Schritt 13
Schritt 13.1
Der Wertebereich des Sekans ist und . Da nicht in diesen Bereich fällt, gibt es keine Lösung.
Keine Lösung
Keine Lösung
Schritt 14
Liste alle Lösungen auf.
, für jede Ganzzahl