Algebra Beispiele

Lösen mithilfe quadratischer Ergänzung x^2+17x+9=13x-3
Schritt 1
Bringe die Gleichung durch Vereinfachen in eine geeignete Form, um die quadratische Ergänzung anzuwenden.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.1.2
Subtrahiere von .
Schritt 1.2
Bringe alle Terme, die enthalten, auf die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2.2
Subtrahiere von .
Schritt 2
Um auf der linken Seite ein Quadrat-Trinom zu bilden, ermittele einen Wert der gleich dem Quadrat der Hälfte von ist.
Schritt 3
Addiere den Ausdruck zu jeder Seite der Gleichung.
Schritt 4
Vereinfache die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Potenziere mit .
Schritt 4.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1
Potenziere mit .
Schritt 4.2.1.2
Addiere und .
Schritt 5
Faktorisiere das perfekte Trinom-Quadrat zu .
Schritt 6
Löse die Gleichung nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 6.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Schreibe als um.
Schritt 6.2.2
Schreibe als um.
Schritt 6.2.3
Schreibe als um.
Schritt 6.2.4
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.4.1
Faktorisiere aus heraus.
Schritt 6.2.4.2
Schreibe als um.
Schritt 6.2.5
Ziehe Terme aus der Wurzel heraus.
Schritt 6.2.6
Bringe auf die linke Seite von .
Schritt 6.3
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 6.3.2
Stelle und um.