Algebra Beispiele

Bestimme die x- und y-Achsenabschnitte y=4(2^x)-2
Schritt 1
Bestimme die Schnittpunkte mit der x-Achse.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Um den/die Schnittpunkt(e) mit der x-Achse zu bestimmen, setze für ein und löse nach auf.
Schritt 1.2
Löse die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Schreibe die Gleichung als um.
Schritt 1.2.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1
Schreibe als um.
Schritt 1.2.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.2.3
Addiere zu beiden Seiten der Gleichung.
Schritt 1.2.4
Erzeuge äquivalente Ausdrücke in der Gleichung, die alle gleiche Basen haben.
Schritt 1.2.5
Da die Basen gleich sind, sind zwei Ausdrücke nur dann gleich, wenn die Exponenten auch gleich sind.
Schritt 1.2.6
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.6.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2.6.2
Subtrahiere von .
Schritt 1.3
Schnittpunkt(e) mit der x-Achse in Punkt-Form.
Schnittpunkt(e) mit der x-Achse:
Schnittpunkt(e) mit der x-Achse:
Schritt 2
Bestimme die Schnittpunkte mit der y-Achse.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Um den/die Schnittpunkt(e) mit der y-Achse zu bestimmen, setze für ein und löse nach auf.
Schritt 2.2
Löse die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Multipliziere mit .
Schritt 2.2.2
Entferne die Klammern.
Schritt 2.2.3
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.3.1.1
Alles, was mit potenziert wird, ist .
Schritt 2.2.3.1.2
Mutltipliziere mit .
Schritt 2.2.3.2
Subtrahiere von .
Schritt 2.3
Schnittpunkt(e) mit der y-Achse in Punkt-Form.
Schnittpunkt(e) mit der y-Achse:
Schnittpunkt(e) mit der y-Achse:
Schritt 3
Führe die Schnittpunkte auf.
Schnittpunkt(e) mit der x-Achse:
Schnittpunkt(e) mit der y-Achse:
Schritt 4