Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Wandle die Ungleichung in eine Gleichung um.
Schritt 2
Schritt 2.1
Vereinfache die linke Seite.
Schritt 2.1.1
Vereinfache .
Schritt 2.1.1.1
Vereinfache jeden Term.
Schritt 2.1.1.1.1
Vereinfache , indem du in den Logarithmus ziehst.
Schritt 2.1.1.1.2
Potenziere mit .
Schritt 2.1.1.2
Nutze die Quotienteneigenschaft von Logarithmen, .
Schritt 2.2
Schreibe in eine Exponentialform indem du die Definition des Logarithmus verwendest. Wenn und positive reelle Zahlen sind und ist, dann ist gleich .
Schritt 2.3
Löse nach auf.
Schritt 2.3.1
Schreibe die Gleichung als um.
Schritt 2.3.2
Multipliziere beide Seiten der Gleichung mit .
Schritt 2.3.3
Vereinfache beide Seiten der Gleichung.
Schritt 2.3.3.1
Vereinfache die linke Seite.
Schritt 2.3.3.1.1
Kürze den gemeinsamen Faktor von .
Schritt 2.3.3.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.3.1.1.2
Forme den Ausdruck um.
Schritt 2.3.3.2
Vereinfache die rechte Seite.
Schritt 2.3.3.2.1
Vereinfache .
Schritt 2.3.3.2.1.1
Berechne den Exponenten.
Schritt 2.3.3.2.1.2
Mutltipliziere mit .
Schritt 3
Schritt 3.1
Setze das Argument in größer als , um zu ermitteln. wo der Ausdruck definiert ist.
Schritt 3.2
Löse nach auf.
Schritt 3.2.1
Multipliziere beide Seiten mit .
Schritt 3.2.2
Vereinfache.
Schritt 3.2.2.1
Vereinfache die linke Seite.
Schritt 3.2.2.1.1
Kürze den gemeinsamen Faktor von .
Schritt 3.2.2.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.2.1.1.2
Forme den Ausdruck um.
Schritt 3.2.2.2
Vereinfache die rechte Seite.
Schritt 3.2.2.2.1
Mutltipliziere mit .
Schritt 3.3
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Schritt 4
Verwende jede Wurzel, um Testintervalle zu erzeugen.
Schritt 5
Schritt 5.1
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 5.1.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 5.1.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 5.1.3
Bestimme, ob die Ungleichung erfüllt ist.
Schritt 5.1.3.1
Die Gleichung kann nicht gelöst werden, da sie nicht definiert ist.
Schritt 5.1.3.2
Die linke Seite hat keine Lösung, was bedeutet, dass die gegebene Aussage falsch ist.
Falsch
Falsch
Falsch
Schritt 5.2
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 5.2.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 5.2.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 5.2.3
Die linke Seite ist kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
Wahr
Wahr
Schritt 5.3
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 5.3.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 5.3.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 5.3.3
Die linke Seite ist größer als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
Falsch
Falsch
Schritt 5.4
Vergleiche die Intervalle, um zu ermitteln, welche die ursprüngliche Ungleichung erfüllen.
Falsch
Wahr
Falsch
Falsch
Wahr
Falsch
Schritt 6
Die Lösung besteht aus allen wahren Intervallen.
Schritt 7
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Ungleichungsform:
Intervallschreibweise:
Schritt 8