Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Schritt 1.1
Kombiniere und .
Schritt 1.2
Bringe auf die linke Seite von .
Schritt 2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3
Multipliziere beide Seiten der Gleichung mit .
Schritt 4
Schritt 4.1
Vereinfache die linke Seite.
Schritt 4.1.1
Vereinfache .
Schritt 4.1.1.1
Kürze den gemeinsamen Faktor von .
Schritt 4.1.1.1.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 4.1.1.1.2
Bringe das führende Minuszeichen in in den Zähler.
Schritt 4.1.1.1.3
Faktorisiere aus heraus.
Schritt 4.1.1.1.4
Kürze den gemeinsamen Faktor.
Schritt 4.1.1.1.5
Forme den Ausdruck um.
Schritt 4.1.1.2
Kürze den gemeinsamen Faktor von .
Schritt 4.1.1.2.1
Faktorisiere aus heraus.
Schritt 4.1.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 4.1.1.2.3
Forme den Ausdruck um.
Schritt 4.1.1.3
Multipliziere.
Schritt 4.1.1.3.1
Mutltipliziere mit .
Schritt 4.1.1.3.2
Mutltipliziere mit .
Schritt 4.2
Vereinfache die rechte Seite.
Schritt 4.2.1
Multipliziere .
Schritt 4.2.1.1
Mutltipliziere mit .
Schritt 4.2.1.2
Kombiniere und .
Schritt 4.2.1.3
Mutltipliziere mit .
Schritt 5
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 6
Schritt 6.1
Schreibe als um.
Schritt 6.2
Vereinfache den Zähler.
Schritt 6.2.1
Schreibe als um.
Schritt 6.2.1.1
Faktorisiere aus heraus.
Schritt 6.2.1.2
Schreibe als um.
Schritt 6.2.2
Ziehe Terme aus der Wurzel heraus.
Schritt 6.3
Mutltipliziere mit .
Schritt 6.4
Vereinige und vereinfache den Nenner.
Schritt 6.4.1
Mutltipliziere mit .
Schritt 6.4.2
Potenziere mit .
Schritt 6.4.3
Potenziere mit .
Schritt 6.4.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 6.4.5
Addiere und .
Schritt 6.4.6
Schreibe als um.
Schritt 6.4.6.1
Benutze , um als neu zu schreiben.
Schritt 6.4.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 6.4.6.3
Kombiniere und .
Schritt 6.4.6.4
Kürze den gemeinsamen Faktor von .
Schritt 6.4.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 6.4.6.4.2
Forme den Ausdruck um.
Schritt 6.4.6.5
Berechne den Exponenten.
Schritt 6.5
Vereinfache den Zähler.
Schritt 6.5.1
Kombiniere unter Anwendung der Produktregel für das Wurzelziehen.
Schritt 6.5.2
Mutltipliziere mit .
Schritt 7
Schritt 7.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 7.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 7.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 8
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: