Algebra Beispiele

Vereinfache (2/(x-1)+2/(x-3))/(-3/(x-1)-3/(x-3))
Schritt 1
Multipliziere den Zähler und Nenner des Bruches mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Mutltipliziere mit .
Schritt 1.2
Kombinieren.
Schritt 2
Wende das Distributivgesetz an.
Schritt 3
Vereinfache durch Kürzen.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.1.2
Forme den Ausdruck um.
Schritt 3.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Faktorisiere aus heraus.
Schritt 3.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.2.3
Forme den Ausdruck um.
Schritt 3.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.3.2
Kürze den gemeinsamen Faktor.
Schritt 3.3.3
Forme den Ausdruck um.
Schritt 3.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.4.2
Faktorisiere aus heraus.
Schritt 3.4.3
Kürze den gemeinsamen Faktor.
Schritt 3.4.4
Forme den Ausdruck um.
Schritt 4
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Faktorisiere aus heraus.
Schritt 4.1.2
Faktorisiere aus heraus.
Schritt 4.1.3
Faktorisiere aus heraus.
Schritt 4.2
Addiere und .
Schritt 4.3
Subtrahiere von .
Schritt 4.4
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.1
Faktorisiere aus heraus.
Schritt 4.4.2
Faktorisiere aus heraus.
Schritt 4.4.3
Faktorisiere aus heraus.
Schritt 4.5
Mutltipliziere mit .
Schritt 5
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Faktorisiere aus heraus.
Schritt 5.1.2
Faktorisiere aus heraus.
Schritt 5.1.3
Faktorisiere aus heraus.
Schritt 5.2
Wende das Distributivgesetz an.
Schritt 5.3
Bringe auf die linke Seite von .
Schritt 5.4
Mutltipliziere mit .
Schritt 5.5
Schreibe als um.
Schritt 5.6
Wende das Distributivgesetz an.
Schritt 5.7
Bringe auf die linke Seite von .
Schritt 5.8
Mutltipliziere mit .
Schritt 5.9
Schreibe als um.
Schritt 5.10
Subtrahiere von .
Schritt 5.11
Addiere und .
Schritt 5.12
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.12.1
Faktorisiere aus heraus.
Schritt 5.12.2
Faktorisiere aus heraus.
Schritt 5.12.3
Faktorisiere aus heraus.
Schritt 5.13
Mutltipliziere mit .
Schritt 6
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1
Faktorisiere aus heraus.
Schritt 6.1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.2.1
Faktorisiere aus heraus.
Schritt 6.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 6.1.2.3
Forme den Ausdruck um.
Schritt 6.2
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Faktorisiere aus heraus.
Schritt 6.2.2
Schreibe als um.
Schritt 6.2.3
Faktorisiere aus heraus.
Schritt 6.2.4
Kürze den gemeinsamen Faktor.
Schritt 6.2.5
Forme den Ausdruck um.
Schritt 7
Mutltipliziere mit .
Schritt 8
Ziehe das Minuszeichen vor den Bruch.
Schritt 9
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: