Algebra Beispiele

Vereinfache ((x^2)/2-2)/(5+10/x)
Schritt 1
Multipliziere den Zähler und Nenner des Bruches mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Mutltipliziere mit .
Schritt 1.2
Kombinieren.
Schritt 2
Wende das Distributivgesetz an.
Schritt 3
Vereinfache durch Kürzen.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Faktorisiere aus heraus.
Schritt 3.1.2
Kürze den gemeinsamen Faktor.
Schritt 3.1.3
Forme den Ausdruck um.
Schritt 3.2
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Potenziere mit .
Schritt 3.2.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.2.2
Addiere und .
Schritt 3.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Faktorisiere aus heraus.
Schritt 3.3.2
Kürze den gemeinsamen Faktor.
Schritt 3.3.3
Forme den Ausdruck um.
Schritt 3.4
Mutltipliziere mit .
Schritt 4
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Faktorisiere aus heraus.
Schritt 4.1.2
Faktorisiere aus heraus.
Schritt 4.1.3
Faktorisiere aus heraus.
Schritt 4.2
Mutltipliziere mit .
Schritt 4.3
Schreibe in eine faktorisierte Form um.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Schreibe als um.
Schritt 4.3.2
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 5
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Mutltipliziere mit .
Schritt 5.2
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Faktorisiere aus heraus.
Schritt 5.2.2
Faktorisiere aus heraus.
Schritt 5.2.3
Faktorisiere aus heraus.
Schritt 6
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Kürze den gemeinsamen Faktor.
Schritt 6.2
Forme den Ausdruck um.