Algebra Beispiele

Solve the System of Equations x^3+2x^2-y-1=0 , 2-y+x-x^2=0
,
Schritt 1
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.1.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.1.3
Addiere zu beiden Seiten der Gleichung.
Schritt 1.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Teile jeden Ausdruck in durch .
Schritt 1.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 1.2.2.2
Dividiere durch .
Schritt 1.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.1.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 1.2.3.1.2
Dividiere durch .
Schritt 1.2.3.1.3
Bringe die negative Eins aus dem Nenner von .
Schritt 1.2.3.1.4
Schreibe als um.
Schritt 1.2.3.1.5
Mutltipliziere mit .
Schritt 1.2.3.1.6
Dividiere durch .
Schritt 2
Ersetze alle Vorkommen von durch in jeder Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Ersetze alle in durch .
Schritt 2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1.1
Wende das Distributivgesetz an.
Schritt 2.2.1.1.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1.2.1
Mutltipliziere mit .
Schritt 2.2.1.1.2.2
Mutltipliziere mit .
Schritt 2.2.1.2
Vereinfache durch Addieren von Termen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.2.1
Addiere und .
Schritt 2.2.1.2.2
Subtrahiere von .
Schritt 3
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Faktorisiere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Stelle die Terme um.
Schritt 3.1.2
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 3.1.2.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 3.1.3
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 3.1.4
Schreibe als um.
Schritt 3.1.5
Faktorisiere.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.5.1
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 3.1.5.2
Entferne unnötige Klammern.
Schritt 3.2
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 3.3
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Setze gleich .
Schritt 3.3.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.3.2.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.2.1
Teile jeden Ausdruck in durch .
Schritt 3.3.2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.2.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 3.3.2.2.2.2
Dividiere durch .
Schritt 3.3.2.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.2.3.1
Dividiere durch .
Schritt 3.4
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Setze gleich .
Schritt 3.4.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.5
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.1
Setze gleich .
Schritt 3.5.2
Addiere zu beiden Seiten der Gleichung.
Schritt 3.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 4
Ersetze alle Vorkommen von durch in jeder Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Ersetze alle in durch .
Schritt 4.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1.1
Potenziere mit .
Schritt 4.2.1.1.2
Potenziere mit .
Schritt 4.2.1.1.3
Mutltipliziere mit .
Schritt 4.2.1.2
Vereinfache durch Addieren und Subtrahieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.2.1
Addiere und .
Schritt 4.2.1.2.2
Subtrahiere von .
Schritt 5
Ersetze alle Vorkommen von durch in jeder Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Ersetze alle in durch .
Schritt 5.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1.1.1
Potenziere mit .
Schritt 5.2.1.1.2
Potenziere mit .
Schritt 5.2.1.1.3
Mutltipliziere mit .
Schritt 5.2.1.2
Vereinfache durch Addieren und Subtrahieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1.2.1
Addiere und .
Schritt 5.2.1.2.2
Subtrahiere von .
Schritt 6
Ersetze alle Vorkommen von durch in jeder Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Ersetze alle in durch .
Schritt 6.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1.1
Potenziere mit .
Schritt 6.2.1.1.2
Potenziere mit .
Schritt 6.2.1.1.3
Mutltipliziere mit .
Schritt 6.2.1.2
Vereinfache durch Addieren und Subtrahieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.2.1
Addiere und .
Schritt 6.2.1.2.2
Subtrahiere von .
Schritt 7
Ersetze alle Vorkommen von durch in jeder Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Ersetze alle in durch .
Schritt 7.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1.1.1
Potenziere mit .
Schritt 7.2.1.1.2
Potenziere mit .
Schritt 7.2.1.1.3
Mutltipliziere mit .
Schritt 7.2.1.2
Vereinfache durch Addieren und Subtrahieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1.2.1
Addiere und .
Schritt 7.2.1.2.2
Subtrahiere von .
Schritt 8
Ersetze alle Vorkommen von durch in jeder Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Ersetze alle in durch .
Schritt 8.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1.1.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 8.2.1.1.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 8.2.1.1.3
Mutltipliziere mit .
Schritt 8.2.1.2
Vereinfache durch Addieren und Subtrahieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1.2.1
Addiere und .
Schritt 8.2.1.2.2
Subtrahiere von .
Schritt 9
Die Lösung des Systems ist der vollständige Satz geordneter Paare, die gültige Lösungen sind.
Schritt 10
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Punkt-Form:
Gleichungsform:
Schritt 11