Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Schritt 1.1
Schreibe als um.
Schritt 1.2
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 2
Schritt 2.1
Faktorisiere aus heraus.
Schritt 2.2
Faktorisiere aus heraus.
Schritt 2.3
Faktorisiere aus heraus.
Schritt 3
Schritt 3.1
Faktorisiere aus heraus.
Schritt 3.1.1
Faktorisiere aus heraus.
Schritt 3.1.2
Faktorisiere aus heraus.
Schritt 3.1.3
Faktorisiere aus heraus.
Schritt 3.1.4
Faktorisiere aus heraus.
Schritt 3.1.5
Faktorisiere aus heraus.
Schritt 3.2
Faktorisiere unter der Verwendung der AC-Methode.
Schritt 3.2.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 3.2.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 4
Schritt 4.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 4.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 5
Schritt 5.1
Kombinieren.
Schritt 5.2
Kürze den gemeinsamen Faktor von .
Schritt 5.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.2
Forme den Ausdruck um.
Schritt 5.3
Kürze den gemeinsamen Teiler von und .
Schritt 5.3.1
Faktorisiere aus heraus.
Schritt 5.3.2
Kürze die gemeinsamen Faktoren.
Schritt 5.3.2.1
Faktorisiere aus heraus.
Schritt 5.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.3.2.3
Forme den Ausdruck um.
Schritt 5.4
Kürze den gemeinsamen Faktor von .
Schritt 5.4.1
Kürze den gemeinsamen Faktor.
Schritt 5.4.2
Forme den Ausdruck um.
Schritt 5.5
Kürze den gemeinsamen Faktor von .
Schritt 5.5.1
Kürze den gemeinsamen Faktor.
Schritt 5.5.2
Dividiere durch .
Schritt 5.6
Wende das Distributivgesetz an.
Schritt 5.7
Vereinfache den Ausdruck.
Schritt 5.7.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 5.7.2
Mutltipliziere mit .
Schritt 6
Schritt 6.1
Bewege .
Schritt 6.2
Mutltipliziere mit .