Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Schritt 1.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 1.2
Da sowohl Zahlen als auch Variablen enthält, sind zwei Schritte notwendig, um das kgV zu finden. Finde das kgV für den numerischen Teil und anschließend für den variablen Teil .
Schritt 1.3
Das kgV ist die kleinste positive Zahl, die von all den Zahlen ohne Rest geteilt wird.
1. Notiere die Primfaktoren für jede Zahl.
2. Multipliziere jeden Faktor so oft, wie er maximal in einer der Zahlen vorkommt.
Schritt 1.4
Die Zahl ist keine Primzahl, da sie nur einen positiven Teiler hat, sich selbst.
Nicht prim
Schritt 1.5
hat Faktoren von und .
Schritt 1.6
Da keine Teiler außer und hat.
ist eine Primzahl
Schritt 1.7
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einer der Zahlen vorkommen.
Schritt 1.8
Mutltipliziere mit .
Schritt 1.9
Der Teiler von ist selbst.
occurs time.
Schritt 1.10
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einem der Terme vorkommen.
Schritt 1.11
Das kgV von ist der numerische Teil multipliziert mit dem variablen Teil.
Schritt 2
Schritt 2.1
Multipliziere jeden Term in mit .
Schritt 2.2
Vereinfache die linke Seite.
Schritt 2.2.1
Vereinfache jeden Term.
Schritt 2.2.1.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 2.2.1.2
Kombiniere und .
Schritt 2.2.1.3
Kürze den gemeinsamen Faktor von .
Schritt 2.2.1.3.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.3.2
Forme den Ausdruck um.
Schritt 2.2.1.4
Kürze den gemeinsamen Faktor von .
Schritt 2.2.1.4.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 2.2.1.4.2
Faktorisiere aus heraus.
Schritt 2.2.1.4.3
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.4.4
Forme den Ausdruck um.
Schritt 2.2.1.5
Potenziere mit .
Schritt 2.2.1.6
Potenziere mit .
Schritt 2.2.1.7
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.2.1.8
Addiere und .
Schritt 2.3
Vereinfache die rechte Seite.
Schritt 2.3.1
Kürze den gemeinsamen Faktor von .
Schritt 2.3.1.1
Faktorisiere aus heraus.
Schritt 2.3.1.2
Kürze den gemeinsamen Faktor.
Schritt 2.3.1.3
Forme den Ausdruck um.
Schritt 2.3.2
Mutltipliziere mit .
Schritt 3
Schritt 3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.2
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 3.3
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 3.4
Vereinfache.
Schritt 3.4.1
Vereinfache den Zähler.
Schritt 3.4.1.1
Potenziere mit .
Schritt 3.4.1.2
Multipliziere .
Schritt 3.4.1.2.1
Mutltipliziere mit .
Schritt 3.4.1.2.2
Mutltipliziere mit .
Schritt 3.4.1.3
Addiere und .
Schritt 3.4.1.4
Schreibe als um.
Schritt 3.4.1.4.1
Faktorisiere aus heraus.
Schritt 3.4.1.4.2
Schreibe als um.
Schritt 3.4.1.5
Ziehe Terme aus der Wurzel heraus.
Schritt 3.4.2
Mutltipliziere mit .
Schritt 3.4.3
Vereinfache .
Schritt 3.4.4
Bringe die negative Eins aus dem Nenner von .
Schritt 3.4.5
Schreibe als um.
Schritt 3.5
Die endgültige Lösung ist die Kombination beider Lösungen.
Schritt 4
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: