Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Schritt 1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2
Schritt 2.1
Ersetze alle in durch .
Schritt 2.2
Vereinfache die linke Seite.
Schritt 2.2.1
Vereinfache .
Schritt 2.2.1.1
Vereinfache jeden Term.
Schritt 2.2.1.1.1
Wende das Distributivgesetz an.
Schritt 2.2.1.1.2
Mutltipliziere mit .
Schritt 2.2.1.1.3
Mutltipliziere mit .
Schritt 2.2.1.2
Subtrahiere von .
Schritt 3
Schritt 3.1
Bringe alle Terme auf die linke Seite der Gleichung und vereinfache.
Schritt 3.1.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.1.2
Addiere und .
Schritt 3.2
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 3.3
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 3.4
Vereinfache.
Schritt 3.4.1
Vereinfache den Zähler.
Schritt 3.4.1.1
Potenziere mit .
Schritt 3.4.1.2
Multipliziere .
Schritt 3.4.1.2.1
Mutltipliziere mit .
Schritt 3.4.1.2.2
Mutltipliziere mit .
Schritt 3.4.1.3
Addiere und .
Schritt 3.4.1.4
Schreibe als um.
Schritt 3.4.1.4.1
Faktorisiere aus heraus.
Schritt 3.4.1.4.2
Schreibe als um.
Schritt 3.4.1.5
Ziehe Terme aus der Wurzel heraus.
Schritt 3.4.2
Mutltipliziere mit .
Schritt 3.4.3
Vereinfache .
Schritt 3.4.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.5
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Schritt 3.5.1
Vereinfache den Zähler.
Schritt 3.5.1.1
Potenziere mit .
Schritt 3.5.1.2
Multipliziere .
Schritt 3.5.1.2.1
Mutltipliziere mit .
Schritt 3.5.1.2.2
Mutltipliziere mit .
Schritt 3.5.1.3
Addiere und .
Schritt 3.5.1.4
Schreibe als um.
Schritt 3.5.1.4.1
Faktorisiere aus heraus.
Schritt 3.5.1.4.2
Schreibe als um.
Schritt 3.5.1.5
Ziehe Terme aus der Wurzel heraus.
Schritt 3.5.2
Mutltipliziere mit .
Schritt 3.5.3
Vereinfache .
Schritt 3.5.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.5.5
Ändere das zu .
Schritt 3.6
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Schritt 3.6.1
Vereinfache den Zähler.
Schritt 3.6.1.1
Potenziere mit .
Schritt 3.6.1.2
Multipliziere .
Schritt 3.6.1.2.1
Mutltipliziere mit .
Schritt 3.6.1.2.2
Mutltipliziere mit .
Schritt 3.6.1.3
Addiere und .
Schritt 3.6.1.4
Schreibe als um.
Schritt 3.6.1.4.1
Faktorisiere aus heraus.
Schritt 3.6.1.4.2
Schreibe als um.
Schritt 3.6.1.5
Ziehe Terme aus der Wurzel heraus.
Schritt 3.6.2
Mutltipliziere mit .
Schritt 3.6.3
Vereinfache .
Schritt 3.6.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.6.5
Ändere das zu .
Schritt 3.7
Die endgültige Lösung ist die Kombination beider Lösungen.
Schritt 4
Schritt 4.1
Ersetze alle in durch .
Schritt 4.2
Vereinfache die rechte Seite.
Schritt 4.2.1
Vereinfache .
Schritt 4.2.1.1
Vereinfache jeden Term.
Schritt 4.2.1.1.1
Kürze den gemeinsamen Faktor von .
Schritt 4.2.1.1.1.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 4.2.1.1.1.2
Faktorisiere aus heraus.
Schritt 4.2.1.1.1.3
Kürze den gemeinsamen Faktor.
Schritt 4.2.1.1.1.4
Forme den Ausdruck um.
Schritt 4.2.1.1.2
Mutltipliziere mit .
Schritt 4.2.1.1.3
Mutltipliziere mit .
Schritt 4.2.1.2
Subtrahiere von .
Schritt 5
Schritt 5.1
Ersetze alle in durch .
Schritt 5.2
Vereinfache die rechte Seite.
Schritt 5.2.1
Vereinfache .
Schritt 5.2.1.1
Vereinfache jeden Term.
Schritt 5.2.1.1.1
Kürze den gemeinsamen Faktor von .
Schritt 5.2.1.1.1.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 5.2.1.1.1.2
Faktorisiere aus heraus.
Schritt 5.2.1.1.1.3
Kürze den gemeinsamen Faktor.
Schritt 5.2.1.1.1.4
Forme den Ausdruck um.
Schritt 5.2.1.1.2
Mutltipliziere mit .
Schritt 5.2.1.1.3
Mutltipliziere mit .
Schritt 5.2.1.2
Subtrahiere von .
Schritt 6
Die Lösung des Systems ist der vollständige Satz geordneter Paare, die gültige Lösungen sind.
Schritt 7
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Punkt-Form:
Gleichungsform:
Schritt 8