Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Schritt 1.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 1.2
Da sowohl Zahlen als auch Variablen enthält, sind zwei Schritte notwendig, um das kgV zu finden. Finde das kgV für den numerischen Teil und anschließend für den variablen Teil .
Schritt 1.3
Das kgV ist die kleinste positive Zahl, die von all den Zahlen ohne Rest geteilt wird.
1. Notiere die Primfaktoren für jede Zahl.
2. Multipliziere jeden Faktor so oft, wie er maximal in einer der Zahlen vorkommt.
Schritt 1.4
Die Zahl ist keine Primzahl, da sie nur einen positiven Teiler hat, sich selbst.
Nicht prim
Schritt 1.5
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einer der Zahlen vorkommen.
Schritt 1.6
Der Teiler von ist selbst.
occurs time.
Schritt 1.7
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einem der Terme vorkommen.
Schritt 2
Schritt 2.1
Multipliziere jeden Term in mit .
Schritt 2.2
Vereinfache die linke Seite.
Schritt 2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.2
Forme den Ausdruck um.
Schritt 2.3
Vereinfache die rechte Seite.
Schritt 2.3.1
Vereinfache jeden Term.
Schritt 2.3.1.1
Kürze den gemeinsamen Faktor von .
Schritt 2.3.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.1.1.2
Forme den Ausdruck um.
Schritt 2.3.1.2
Multipliziere mit durch Addieren der Exponenten.
Schritt 2.3.1.2.1
Bewege .
Schritt 2.3.1.2.2
Mutltipliziere mit .
Schritt 2.3.1.2.2.1
Potenziere mit .
Schritt 2.3.1.2.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.3.1.2.3
Addiere und .
Schritt 3
Schritt 3.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.3
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 3.3.1
Subtrahiere von .
Schritt 3.3.2
Addiere und .
Schritt 3.4
Faktorisiere aus heraus.
Schritt 3.4.1
Stelle und um.
Schritt 3.4.2
Faktorisiere aus heraus.
Schritt 3.4.3
Faktorisiere aus heraus.
Schritt 3.4.4
Faktorisiere aus heraus.
Schritt 3.5
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 3.6
Setze gleich und löse nach auf.
Schritt 3.6.1
Setze gleich .
Schritt 3.6.2
Löse nach auf.
Schritt 3.6.2.1
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 3.6.2.2
Vereinfache .
Schritt 3.6.2.2.1
Schreibe als um.
Schritt 3.6.2.2.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 3.6.2.2.3
Plus oder Minus ist .
Schritt 3.7
Setze gleich und löse nach auf.
Schritt 3.7.1
Setze gleich .
Schritt 3.7.2
Löse nach auf.
Schritt 3.7.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.7.2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.7.2.2.1
Teile jeden Ausdruck in durch .
Schritt 3.7.2.2.2
Vereinfache die linke Seite.
Schritt 3.7.2.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.7.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.7.2.2.2.1.2
Dividiere durch .
Schritt 3.7.2.2.3
Vereinfache die rechte Seite.
Schritt 3.7.2.2.3.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 3.8
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 4
Schließe die Lösungen aus, die nicht erfüllen.
Schritt 5
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: