Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Die Funktion kann ermittelt werden durch Bestimmen des unbestimmten Integrals der Ableitung .
Schritt 2
Schritt 2.1
Es sei . Ermittle .
Schritt 2.1.1
Differenziere .
Schritt 2.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.1.5
Addiere und .
Schritt 2.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 3
Das Integral von nach ist .
Schritt 4
Ersetze alle durch .
Schritt 5
Die Funktion wird vom Integral der Ableitung der Funktion abgeleitet. Dies ergibt sich aus dem Fundamentalsatz der Analysis.