Algebra Beispiele

Solve the Inequality for x (x^2+1)/(5x+11)<=0
Schritt 1
Bestimme alle die Werte, für die der Ausdruck von negativ nach positiv wechselt durch Gleichsetzen jedes Faktors mit und auflösen.
Schritt 2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 4
Schreibe als um.
Schritt 5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 5.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 5.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 6
Subtrahiere von beiden Seiten der Gleichung.
Schritt 7
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Teile jeden Ausdruck in durch .
Schritt 7.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 7.2.1.2
Dividiere durch .
Schritt 7.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 8
Löse für jeden Faktor, um die Werte zu ermitteln, wo der Absolutwert-Ausdruck von negativ nach positiv wechselt.
Schritt 9
Bestimme den Definitionsbereich von .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 9.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 9.2.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.2.1
Teile jeden Ausdruck in durch .
Schritt 9.2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 9.2.2.2.1.2
Dividiere durch .
Schritt 9.2.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.2.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 9.3
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Schritt 10
Die Lösung besteht aus allen wahren Intervallen.
Schritt 11
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Ungleichungsform:
Intervallschreibweise:
Schritt 12