Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Schritt 1.1
Mutltipliziere mit .
Schritt 1.2
Kombinieren.
Schritt 2
Wende das Distributivgesetz an.
Schritt 3
Schritt 3.1
Kürze den gemeinsamen Faktor von .
Schritt 3.1.1
Faktorisiere aus heraus.
Schritt 3.1.2
Kürze den gemeinsamen Faktor.
Schritt 3.1.3
Forme den Ausdruck um.
Schritt 3.2
Multipliziere mit durch Addieren der Exponenten.
Schritt 3.2.1
Mutltipliziere mit .
Schritt 3.2.1.1
Potenziere mit .
Schritt 3.2.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.2.2
Addiere und .
Schritt 3.3
Kürze den gemeinsamen Faktor von .
Schritt 3.3.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.3.2
Faktorisiere aus heraus.
Schritt 3.3.3
Kürze den gemeinsamen Faktor.
Schritt 3.3.4
Forme den Ausdruck um.
Schritt 3.4
Mutltipliziere mit .
Schritt 3.5
Kürze den gemeinsamen Faktor von .
Schritt 3.5.1
Faktorisiere aus heraus.
Schritt 3.5.2
Kürze den gemeinsamen Faktor.
Schritt 3.5.3
Forme den Ausdruck um.
Schritt 3.6
Kürze den gemeinsamen Faktor von .
Schritt 3.6.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.6.2
Faktorisiere aus heraus.
Schritt 3.6.3
Kürze den gemeinsamen Faktor.
Schritt 3.6.4
Forme den Ausdruck um.
Schritt 4
Schritt 4.1
Faktorisiere aus heraus.
Schritt 4.2
Faktorisiere aus heraus.
Schritt 4.3
Faktorisiere aus heraus.
Schritt 5
Schritt 5.1
Bringe auf die linke Seite von .
Schritt 5.2
Schreibe als um.
Schritt 5.3
Schreibe in eine faktorisierte Form um.
Schritt 5.3.1
Schreibe als um.
Schritt 5.3.2
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 6
Schritt 6.1
Kürze den gemeinsamen Teiler von und .
Schritt 6.1.1
Faktorisiere aus heraus.
Schritt 6.1.2
Schreibe als um.
Schritt 6.1.3
Faktorisiere aus heraus.
Schritt 6.1.4
Stelle die Terme um.
Schritt 6.1.5
Kürze den gemeinsamen Faktor.
Schritt 6.1.6
Forme den Ausdruck um.
Schritt 6.2
Vereinfache den Ausdruck.
Schritt 6.2.1
Bringe auf die linke Seite von .
Schritt 6.2.2
Ziehe das Minuszeichen vor den Bruch.