Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Schritt 1.1
Setze das Innere des Absolutwertes gleich , um die -Koordinate des Scheitelpunktes zu bestimmen. In diesem Fall: .
Schritt 1.2
Löse die Gleichung , um die -Koordinate der Absolutwert-Spitze zu ermitteln.
Schritt 1.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 1.2.2
Multipliziere beide Seiten der Gleichung mit .
Schritt 1.2.3
Vereinfache beide Seiten der Gleichung.
Schritt 1.2.3.1
Vereinfache die linke Seite.
Schritt 1.2.3.1.1
Kürze den gemeinsamen Faktor von .
Schritt 1.2.3.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.3.1.1.2
Forme den Ausdruck um.
Schritt 1.2.3.2
Vereinfache die rechte Seite.
Schritt 1.2.3.2.1
Mutltipliziere mit .
Schritt 1.3
Ersetze in dem Ausdruck die Variable durch .
Schritt 1.4
Vereinfache .
Schritt 1.4.1
Dividiere durch .
Schritt 1.4.2
Subtrahiere von .
Schritt 1.4.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 1.5
Die Absolutwert-Spitze ist .
Schritt 2
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 3
Schritt 3.1
Setze den -Wert in ein. In diesem Fall ist der Punkt .
Schritt 3.1.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.1.2
Vereinfache das Ergebnis.
Schritt 3.1.2.1
Dividiere durch .
Schritt 3.1.2.2
Subtrahiere von .
Schritt 3.1.2.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 3.1.2.4
Die endgültige Lösung ist .
Schritt 3.2
Setze den -Wert in ein. In diesem Fall ist der Punkt .
Schritt 3.2.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.2.2
Vereinfache das Ergebnis.
Schritt 3.2.2.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.2.2.2
Kombiniere und .
Schritt 3.2.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.2.2.4
Vereinfache den Zähler.
Schritt 3.2.2.4.1
Mutltipliziere mit .
Schritt 3.2.2.4.2
Subtrahiere von .
Schritt 3.2.2.5
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.2.2.6
ist ungefähr , was negativ ist, also kehre das Vorzeichen von um und entferne den Absolutwert
Schritt 3.2.2.7
Die endgültige Lösung ist .
Schritt 3.3
Setze den -Wert in ein. In diesem Fall ist der Punkt .
Schritt 3.3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.3.2
Vereinfache das Ergebnis.
Schritt 3.3.2.1
Dividiere durch .
Schritt 3.3.2.2
Subtrahiere von .
Schritt 3.3.2.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 3.3.2.4
Die endgültige Lösung ist .
Schritt 3.4
Der Absolutwert kann mithilfe der Punkte um den Scheitelpunkt graphisch dargestellt werden.
Schritt 4