Gib eine Aufgabe ein ...
Algebra Beispiele
Schritt 1
Schritt 1.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.2
Vereinfache Terme.
Schritt 1.2.1
Kombiniere und .
Schritt 1.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.3
Vereinfache den Zähler.
Schritt 1.3.1
Wende das Distributivgesetz an.
Schritt 1.3.2
Mutltipliziere mit .
Schritt 1.3.3
Subtrahiere von .
Schritt 1.3.4
Addiere und .
Schritt 1.4
Vereinfache durch Herausfaktorisieren.
Schritt 1.4.1
Faktorisiere aus heraus.
Schritt 1.4.2
Schreibe als um.
Schritt 1.4.3
Faktorisiere aus heraus.
Schritt 1.4.4
Vereinfache den Ausdruck.
Schritt 1.4.4.1
Schreibe als um.
Schritt 1.4.4.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 2
Bestimme alle die Werte, für die der Ausdruck von negativ nach positiv wechselt durch Gleichsetzen jedes Faktors mit und auflösen.
Schritt 3
Addiere zu beiden Seiten der Gleichung.
Schritt 4
Addiere zu beiden Seiten der Gleichung.
Schritt 5
Löse für jeden Faktor, um die Werte zu ermitteln, wo der Absolutwert-Ausdruck von negativ nach positiv wechselt.
Schritt 6
Fasse die Lösungen zusammen.
Schritt 7
Schritt 7.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 7.2
Addiere zu beiden Seiten der Gleichung.
Schritt 7.3
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Schritt 8
Verwende jede Wurzel, um Testintervalle zu erzeugen.
Schritt 9
Schritt 9.1
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 9.1.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 9.1.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 9.1.3
Die linke Seite ist kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
Wahr
Wahr
Schritt 9.2
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 9.2.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 9.2.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 9.2.3
Die linke Seite ist nicht kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
Falsch
Falsch
Schritt 9.3
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 9.3.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 9.3.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 9.3.3
Die linke Seite ist kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
Wahr
Wahr
Schritt 9.4
Vergleiche die Intervalle, um zu ermitteln, welche die ursprüngliche Ungleichung erfüllen.
Wahr
Falsch
Wahr
Wahr
Falsch
Wahr
Schritt 10
Die Lösung besteht aus allen wahren Intervallen.
oder
Schritt 11
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Ungleichungsform:
Intervallschreibweise:
Schritt 12