Algebra Beispiele

x 구하기 (x+3)(x-3)=16-2x^2
Schritt 1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Forme um.
Schritt 1.2
Vereinfache durch Addieren von Nullen.
Schritt 1.3
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Wende das Distributivgesetz an.
Schritt 1.3.2
Wende das Distributivgesetz an.
Schritt 1.3.3
Wende das Distributivgesetz an.
Schritt 1.4
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1.1
Ordne die Faktoren in den Termen und neu an.
Schritt 1.4.1.2
Addiere und .
Schritt 1.4.1.3
Addiere und .
Schritt 1.4.2
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.2.1
Mutltipliziere mit .
Schritt 1.4.2.2
Mutltipliziere mit .
Schritt 2
Bringe alle Terme, die enthalten, auf die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.2
Addiere und .
Schritt 3
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.2
Addiere und .
Schritt 4
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Teile jeden Ausdruck in durch .
Schritt 4.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.1.2
Dividiere durch .
Schritt 5
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 6
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Schreibe als um.
Schritt 6.2
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Schreibe als um.
Schritt 6.2.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 6.3
Mutltipliziere mit .
Schritt 6.4
Vereinige und vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.1
Mutltipliziere mit .
Schritt 6.4.2
Potenziere mit .
Schritt 6.4.3
Potenziere mit .
Schritt 6.4.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 6.4.5
Addiere und .
Schritt 6.4.6
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.6.1
Benutze , um als neu zu schreiben.
Schritt 6.4.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 6.4.6.3
Kombiniere und .
Schritt 6.4.6.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 6.4.6.4.2
Forme den Ausdruck um.
Schritt 6.4.6.5
Berechne den Exponenten.
Schritt 7
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 7.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 7.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 8
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: