حساب المثلثات الأمثلة

Resolver para x (sin(2x))/(cos(2x))=-(sin(x))/(cos(x))
خطوة 1
استخدِم متطابقة ضعف الزاوية لتحويل إلى .
خطوة 2
أضف إلى كلا المتعادلين.
خطوة 3
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.1.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.1.1
طبّق متطابقة ضعف الزاوية للجيب.
خطوة 3.1.1.2
حوّل من إلى .
خطوة 3.1.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 3.1.3
اجمع البسوط على القاسم المشترك.
خطوة 3.1.4
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.4.1
طبّق متطابقة ضعف الزاوية للجيب.
خطوة 3.1.4.2
طبّق متطابقة ضعف الزاوية لدالة جيب التمام.
خطوة 3.1.4.3
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.4.3.1
طبّق متطابقة ضعف الزاوية للجيب.
خطوة 3.1.4.3.2
استخدِم متطابقة ضعف الزاوية لتحويل إلى .
خطوة 3.1.4.3.3
طبّق خاصية التوزيع.
خطوة 3.1.4.3.4
اضرب في .
خطوة 3.1.4.3.5
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.1.4.4
طبّق متطابقة ضعف الزاوية للجيب.
خطوة 4
أوجِد قيمة في المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
خطوة 4.2
أوجِد قيمة في المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1.1
أعِد كتابة من حيث الجيوب وجيوب التمام.
خطوة 4.2.1.1.2
أعِد كتابة من حيث الجيوب وجيوب التمام.
خطوة 4.2.1.1.3
اجمع و.
خطوة 4.2.1.1.4
انقُل السالب أمام الكسر.
خطوة 4.2.1.1.5
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1.5.1
اجمع و.
خطوة 4.2.1.1.5.2
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1.5.2.1
انقُل .
خطوة 4.2.1.1.5.2.2
اضرب في .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1.5.2.2.1
ارفع إلى القوة .
خطوة 4.2.1.1.5.2.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 4.2.1.1.5.2.3
أضف و.
خطوة 4.2.1.1.6
انقُل إلى يسار .
خطوة 4.2.2
اضرب كلا المتعادلين في .
خطوة 4.2.3
طبّق خاصية التوزيع.
خطوة 4.2.4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.4.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.4.1.1
ألغِ العامل المشترك.
خطوة 4.2.4.1.2
أعِد كتابة العبارة.
خطوة 4.2.4.2
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 4.2.5
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.5.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.5.1.1
أخرِج العامل من .
خطوة 4.2.5.1.2
ألغِ العامل المشترك.
خطوة 4.2.5.1.3
أعِد كتابة العبارة.
خطوة 4.2.5.2
اضرب في .
خطوة 4.2.6
اضرب في .
خطوة 4.2.7
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.7.1
طبّق متطابقة ضعف الزاوية للجيب.
خطوة 4.2.7.2
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 4.2.7.3
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.7.3.1
ارفع إلى القوة .
خطوة 4.2.7.3.2
ارفع إلى القوة .
خطوة 4.2.7.3.3
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 4.2.7.3.4
أضف و.
خطوة 4.2.8
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.8.1
أخرِج العامل من .
خطوة 4.2.8.2
ارفع إلى القوة .
خطوة 4.2.8.3
أخرِج العامل من .
خطوة 4.2.8.4
أخرِج العامل من .
خطوة 4.2.8.5
أخرِج العامل من .
خطوة 4.2.8.6
أخرِج العامل من .
خطوة 4.2.9
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 4.2.10
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.10.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.2.10.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.10.2.1
خُذ الجيب العكسي لكلا المتعادلين لاستخراج من داخل الجيب.
خطوة 4.2.10.2.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.10.2.2.1
القيمة الدقيقة لـ هي .
خطوة 4.2.10.2.3
دالة الجيب موجبة في الربعين الأول والثاني. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الثاني.
خطوة 4.2.10.2.4
اطرح من .
خطوة 4.2.10.2.5
أوجِد فترة .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.10.2.5.1
يمكن حساب فترة الدالة باستخدام .
خطوة 4.2.10.2.5.2
استبدِل بـ في القاعدة للفترة.
خطوة 4.2.10.2.5.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 4.2.10.2.5.4
اقسِم على .
خطوة 4.2.10.2.6
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 4.2.11
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.11.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.2.11.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.11.2.1
استبدِل بـ بناءً على المتطابقة .
خطوة 4.2.11.2.2
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.11.2.2.1
طبّق خاصية التوزيع.
خطوة 4.2.11.2.2.2
اضرب في .
خطوة 4.2.11.2.2.3
اضرب في .
خطوة 4.2.11.2.3
بسّط بجمع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.11.2.3.1
أضف و.
خطوة 4.2.11.2.3.2
اطرح من .
خطوة 4.2.11.2.4
اطرح من كلا المتعادلين.
خطوة 4.2.11.2.5
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.11.2.5.1
اقسِم كل حد في على .
خطوة 4.2.11.2.5.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.11.2.5.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.11.2.5.2.1.1
ألغِ العامل المشترك.
خطوة 4.2.11.2.5.2.1.2
اقسِم على .
خطوة 4.2.11.2.5.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.11.2.5.3.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 4.2.11.2.6
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 4.2.11.2.7
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.11.2.7.1
أعِد كتابة بالصيغة .
خطوة 4.2.11.2.7.2
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.11.2.7.2.1
أعِد كتابة بالصيغة .
خطوة 4.2.11.2.7.2.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 4.2.11.2.8
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.11.2.8.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 4.2.11.2.8.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 4.2.11.2.8.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 4.2.11.2.9
عيّن كل حل من الحلول لإيجاد قيمة .
خطوة 4.2.11.2.10
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.11.2.10.1
خُذ الجيب العكسي لكلا المتعادلين لاستخراج من داخل الجيب.
خطوة 4.2.11.2.10.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.11.2.10.2.1
القيمة الدقيقة لـ هي .
خطوة 4.2.11.2.10.3
دالة الجيب موجبة في الربعين الأول والثاني. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الثاني.
خطوة 4.2.11.2.10.4
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.11.2.10.4.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 4.2.11.2.10.4.2
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.11.2.10.4.2.1
اجمع و.
خطوة 4.2.11.2.10.4.2.2
اجمع البسوط على القاسم المشترك.
خطوة 4.2.11.2.10.4.3
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.11.2.10.4.3.1
انقُل إلى يسار .
خطوة 4.2.11.2.10.4.3.2
اطرح من .
خطوة 4.2.11.2.10.5
أوجِد فترة .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.11.2.10.5.1
يمكن حساب فترة الدالة باستخدام .
خطوة 4.2.11.2.10.5.2
استبدِل بـ في القاعدة للفترة.
خطوة 4.2.11.2.10.5.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 4.2.11.2.10.5.4
اقسِم على .
خطوة 4.2.11.2.10.6
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 4.2.11.2.11
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.11.2.11.1
خُذ الجيب العكسي لكلا المتعادلين لاستخراج من داخل الجيب.
خطوة 4.2.11.2.11.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.11.2.11.2.1
القيمة الدقيقة لـ هي .
خطوة 4.2.11.2.11.3
دالة الجيب سالبة في الربعين الثالث والرابع. لإيجاد الحل الثاني، اطرح الحل من ، لإيجاد زاوية المرجع. وبعد ذلك، اجمع زاوية المرجع المذكورة مع لإيجاد الحل في الربع الثالث.
خطوة 4.2.11.2.11.4
بسّط العبارة لإيجاد الحل الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.11.2.11.4.1
اطرح من .
خطوة 4.2.11.2.11.4.2
الزاوية الناتجة لـ موجبة وأصغر من ومشتركة النهاية مع .
خطوة 4.2.11.2.11.5
أوجِد فترة .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.11.2.11.5.1
يمكن حساب فترة الدالة باستخدام .
خطوة 4.2.11.2.11.5.2
استبدِل بـ في القاعدة للفترة.
خطوة 4.2.11.2.11.5.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 4.2.11.2.11.5.4
اقسِم على .
خطوة 4.2.11.2.11.6
اجمع مع كل زاوية سالبة لإيجاد الزوايا الموجبة.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.11.2.11.6.1
اجمع مع لإيجاد الزاوية الموجبة.
خطوة 4.2.11.2.11.6.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 4.2.11.2.11.6.3
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.11.2.11.6.3.1
اجمع و.
خطوة 4.2.11.2.11.6.3.2
اجمع البسوط على القاسم المشترك.
خطوة 4.2.11.2.11.6.4
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.11.2.11.6.4.1
اضرب في .
خطوة 4.2.11.2.11.6.4.2
اطرح من .
خطوة 4.2.11.2.11.6.5
اسرِد الزوايا الجديدة.
خطوة 4.2.11.2.11.7
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 4.2.11.2.12
اسرِد جميع الحلول.
، لأي عدد صحيح
خطوة 4.2.11.2.13
وحّد الحلول.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.11.2.13.1
ادمج و في .
، لأي عدد صحيح
خطوة 4.2.11.2.13.2
ادمج و في .
، لأي عدد صحيح
، لأي عدد صحيح
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 4.2.12
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
، لأي عدد صحيح
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 5
وحّد الإجابات.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
ادمج و في .
، لأي عدد صحيح
خطوة 5.2
وحّد الإجابات.
، لأي عدد صحيح
، لأي عدد صحيح