إدخال مسألة...
حساب المثلثات الأمثلة
خطوة 1
خطوة 1.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 1.2
المضاعف المشترك الأصغر هو أصغر عدد موجب يمكن قسمته على جميع الأعداد بالتساوي.
1. اكتب قائمة العوامل الأساسية لكل عدد.
2. اضرب كل عامل في أكبر عدد من مرات ظهوره في أي رقم.
خطوة 1.3
لها العاملان و.
خطوة 1.4
العدد ليس عددًا أوليًا لأن له عامل موجب واحد فقط، وهو العدد نفسه.
ليس أوليًا
خطوة 1.5
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من العددين.
خطوة 1.6
اضرب في .
خطوة 1.7
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 1.8
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل في أكبر عدد من المرات التي تظهر فيها في أي من الحدين.
خطوة 1.9
المضاعف المشترك الأصغر لبعض الأعداد هو أصغر عدد تمثل الأعداد عوامله.
خطوة 2
خطوة 2.1
اضرب كل حد في في .
خطوة 2.2
بسّط الطرف الأيسر.
خطوة 2.2.1
اختزِل العبارة بحذف العوامل المشتركة.
خطوة 2.2.1.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 2.2.1.2
ألغِ العامل المشترك لـ .
خطوة 2.2.1.2.1
ألغِ العامل المشترك.
خطوة 2.2.1.2.2
أعِد كتابة العبارة.
خطوة 2.2.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
خطوة 2.2.2.1
طبّق خاصية التوزيع.
خطوة 2.2.2.2
طبّق خاصية التوزيع.
خطوة 2.2.2.3
طبّق خاصية التوزيع.
خطوة 2.2.3
بسّط الحدود.
خطوة 2.2.3.1
جمّع الحدود المتعاكسة في .
خطوة 2.2.3.1.1
أعِد ترتيب العوامل في الحدين و.
خطوة 2.2.3.1.2
اطرح من .
خطوة 2.2.3.1.3
أضف و.
خطوة 2.2.3.2
بسّط كل حد.
خطوة 2.2.3.2.1
اضرب في .
خطوة 2.2.3.2.2
اضرب في .
خطوة 2.3
بسّط الطرف الأيمن.
خطوة 2.3.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 2.3.2
اضرب .
خطوة 2.3.2.1
اجمع و.
خطوة 2.3.2.2
اضرب في .
خطوة 2.3.3
ألغِ العامل المشترك لـ .
خطوة 2.3.3.1
ألغِ العامل المشترك.
خطوة 2.3.3.2
أعِد كتابة العبارة.
خطوة 3
خطوة 3.1
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
خطوة 3.1.1
أضف إلى كلا المتعادلين.
خطوة 3.1.2
أضف و.
خطوة 3.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 3.3
بسّط .
خطوة 3.3.1
أعِد كتابة بالصيغة .
خطوة 3.3.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 3.4
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 3.4.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 3.4.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 3.4.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.